plain

Plain nanomag®-D particles have an unmodified dextran surface and are available with diameters of 130 nm, 250 nm and 500 nm. They have a high potential for nucleic acid separation. Especially the 500 nm nanomag®-D particles provide an excellent magnetic mobility in high-throughput nucleic acid separations. nanomag®-D particles are supplied in water without any surfactants.
The study of the formation and properties of magnetic chains of 130 nm nanomag®-D and other magnetic nanoparticles in separations of molecules and cells has shown, that magnetic chains bind to immunomagnetically labeled cells, serving as temporary handles, that allow novel magnetic manipulations (Wilson et al., 2009). In another application plain nanomag®-D particles served as model particles to examine the fouling potential of composite particles (Lipp et al., 2009).

Showing all 3 results

References
  • Astalan, A.P., Ahrentorp, F., Johansson, C., Larsson, K., and Krozer, A., Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles, Biosensors and Bioelectronics, 2004, 19(8), 945-51;
  • Benkoski, J.J., Breidenich, J.L., Uy, O.M., Hayes, A.T., Deacon, R.M., Land, H.B., Spicer, J.M., Keng, P.Y., and Pyun, J., Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies, J Mater Chem, 2011, 21(20), 7314-25;
  • Buchegger, P., Sauer, U., Toth-Szekely, H., and Preininger, C., Miniaturized protein microarray with internal calibration as point-of-care device for diagnosis of neonatal sepsis, Sensors, 2012, 12, 1494-508;
  • Dalslet, B.T., Damsgaard, C., Donolato, M., Stromme, M., Strömberg, M., Svedlindh, P., and Hansen, M.F., Bead magnetorelaxometry with an on-chip magnetoresistive sensor, Lab Chip, 2011, 11, 296-302;
  • Donolato, M., Lofink, F., Hankemeier, S., Porro, J., Oepen, H., and Vavassori, P., Characterization of domain wall–based traps for magnetic beads separation, Journal of Applied Physics, 2012, 111(7), 07B336;
  • Eveness, J., Kiely, J., Hawkins, P., Wraith, P., and Luxton, R., Evaluation of paramagnetic particles for use in a resonant coil magnetometer based magneto-immunoassay, Sensors and Actuators B: Chemical, 2009, 139(2), 538-42;
  • Glatz, A., Bastin, M.E., Kiker, A.J., Deary, I.J., Wardlaw, J.M., and Hernández, M.C.V., Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities, NeuroImage, 2015, 105, 332-46;
  • Hedayati, M., Abubaker-Sharif, B., Khattab, M., Razavi, A., Mohammed, I., Nejad, A., Wabler, M., Zhou, H., Mihalic, J., Gruettner, C., DeWeese, T., and Ivkov, R., An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles, International Journal of Hyperthermia, 2017, 1-9, doi: 10.1080/02656736.2017.1354403;
  • Lipp, P., Müller, U., Hetzer, B., and Wagner, T., Characterization of nanoparticulate fouling and breakthrough during low-pressure membrane filtration, Desalination and Water Treatment, 2009, 9(1-3), 234-40;
  • Metaxas, P.J., Sushruth, M., Begley, R.A., Ding, J., Woodward, R.C., Maksymov, I.S., Albert, M., Wang, W., Fangohr, H., and Adeyeye, A.O., Sensing magnetic nanoparticles using nano-confined ferromagnetic resonances in a magnonic crystal, Applied Physics Letters, 2015, 106(23), 232406;
  • Mizuki, T., Sawai, M., Nagaoka, Y., Morimoto, H., and Maekawa, T., Activity of lipase and chitinase immobilized on superparamagnetic particles in a rotational magnetic field, Plos ONE, 2013, 8(6), e66528;
  • Mizuki, T., Watanabe, N., Nagaoka, Y., Fukushima, T., Morimoto, H., Usami, R., and Maekawa, T., Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field, Biochem Biophys Res Comm, 2010, 779-82;
  • Osterberg, F.W., Dalslet, B.T., Snakenborg, D., Johansson, C., and Hansen, M.F., Chip-based measurements of brownian relaxation of magnetic beads using a planar hall effect magnetic field sensor, AIP Conf Proc, 2012, 1311, 176-83;
  • Saari, M., Sakai, K., Kiwa, T., Sasayama, T., Yoshida, T., and Tsukada, K., Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high-T c superconducting quantum interference device magnetometer, Journal of Applied Physics, 2015, 117(17), 17B321;
  • Selt, M., Tennstaedt, A., Beyrau, A., Nelles, M., Schneider, G., Löwik, C., and Hoehn, M., In Vivo Non-Invasive Tracking of Macrophage Recruitment to Experimental Stroke, PloS one, 2016, 11(6), e0156626;
  • Seo, Y., Ikemoto, E., Yoshida, A., and Kogure, K., Particle capture by marine bacteria, Aquatic microbial ecology, 2007, 49(3), 243-53;
  • Ström, V., Hultenby, K., Grüttner, C., Teller, J., Xu, B., and Holgersson, J., A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer, Nanotechnology, 2004, 15(5), 457;
  • Sushruth, M., Ding, J., Duczynski, J., Woodward, R.C., Begley, R., Fangohr, H., Fuller, R.O., Adeyeye, A.O., Kostylev, M., and Metaxas, P.J., Resonance-based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets, arXiv preprint arXiv:160405835, 2016;
  • Tseng, P., Judy, J.W., and Di Carlo, D., Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior, Nature Methods, 2012, 9(11), 1113-9;
  • Wilson, R.J., Hu, W., Wong Po Fu, C., Koh, A.L., Gaster, R.S., Earhart, C.M., and al., e., Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells, Journal of Magnetism and Magnetic Materials, 2009, 321(10), 1452-8;