COOH

nanomag®-D particles with diameters of 130 nm, 250 nm and 500 nm are designed with carboxylic acid groups on the surface for the covalent binding of proteins, antibodies or other molecules, e.g. by carbodiimide chemistry (see technote 200). The functionalized nanomag®-D particles are supplied in water without any surfactants.
The biocompatible nanomag®-D particles were studied in hyperthermia cancer therapy (Marcos-Campos 2011). Furthermore carboxylated nanomag®-D particles were conjugated with an aptamer and investigated as nanosurgeon (Nair et al., 2010).

Showing all 3 results

References
  • Asin, L., Ibarra, M.R., Tres, A., and Goya, G.F., Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration, Pharm Res, 2012, 29, 1319-27;
  • Dixon, J.E., Osman, G., Morris, G.E., Markides, H., Rotherham, M., Bayoussef, Z., El Haj, A.J., Denning, C., and Shakesheff, K.M., Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides, Proceedings of the National Academy of Sciences, 2016, 113(3), E291-E9;
  • Gilmer, L., Mandal, A., Wolkowitz, M.J., Klotz, K.L., and Herr, J.C., Compositions and methods for identifying sperm for forensic applications, US 0318250, 2008;
  • Gregory, C., and Pound, J., Cell separation technique, US 2011/0256581 A1, 2011;
  • Kuramitz, H., Magnetic microbead-based electrochemical immunoassays, Anal Bioanal Chem, 2009, 394, 61-9;
  • Ma, Y.-H., Chen, S.-Y., Tu, S.-J., Yang, H.-W., and Liu, H.-L., Manipulation of magnetic nanoparticle retention and hemodynamic consequences in microcirculation: assessment by laser speckle imaging, Int J of Nanomedicine, 2012, 7, 2817;
  • Marcos-Campos, I., Asin, L., Torres, T., Marquina, C., Tres, A., Ibarra, M., and Goya, G.F., Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells, Nanotechnology, 2011, 22(20), 205101;
  • Milano, G., Musumeci, D., Gaglione, M., and Messere, A., An alternative strategy to synthesize PNA and DNA magnetic conjugates forming nanoparticle assembly based on PNA/DNA duplexes, Molecular BioSystems, 2010, 6(3), 553-61;
  • Nair, B.G., Nagaoka, Y., Morimoto, H., Yoshida, Y., Maekawa, T., and Kumar, D.S., Aptamer conjugated magnetic nanoparticles as nanosurgeons, Nanotechnology, 2010, 21(45), 455102;
  • Robatjazi, S.-M., Shojaosadati, S.-A., Khalilzadeh, R., and Farahani, E., Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatalysis and Biotransformation, 2010, 304-12;
  • Takamura, T., Ko, P.J., Sharma, J., Yukino, R., Ishizawa, S., and Sandhu, A., Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications, Sensors, 2015, 15(6), 12983-98;