BNF particles

Bionized NanoFerrite particles (BNF particles)

  • are prepared via the core-shell method with a core of 75-80% (w/w) magnetite and a shell of dextran or hydroxyethyl starch,
  • are available with particle diameters of 80 nm and 100 nm,
  • are thermally blocked at room temperature and show specific interaction with alternating magnetic fields (Dennis et al. 2008 und 2009; Krycka et al., 2011; Bordelon et al., 2011),
  • 100 nm BNF particles can be separated with conventional permanent magnets,
  • 80 nm BNF particles have to be separated in high gradient magnetic fields or for several hours at a strong permanent magnet,
  • are designed with the surface functionalities OH (plain), NH2, PEG-NH2, COOH and PEG-COOH for the covalent binding of proteins, antibodies or other molecules,
  • are available with covalently bound proteins (streptavidin, protein A),
  • can be provided with covalently bound antibodies on request,
  • can easily be filtered through 0.22 µm filters.


Showing all 28 results

References
  • Ahrentorp, F., Astalan, A., Blomgren, J., Jonasson, C., Wetterskog, E., Svedlindh, P., Lak, A., Ludwig, F., van IJzendoorn, L.J., and Westphal, F., Effective particle magnetic moment of multi-core particles, Journal of Magnetism and Magnetic Materials, 2015, 380, 221-6;
  • Al Faraj, A., Shaik, A., Shaik, A., and Al Sayed, B., Enhanced magnetic delivery of superparamagnetic iron oxide nanoparticles to the lung monitored using noninvasive MR, Journal of Nanoparticle Research, 2014, 16(10), 1-11, doi: 10.1007/s11051-014-2667-9;
  • Attaluri, A., Kandala, S.K., Wabler, M., Zhou, H., Cornejo, C., Armour, M., Hedayati, M., Zhang, Y., DeWeese, T.L., Herman, C., and Ivkov, R., Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer, International Journal of Hyperthermia, 0(0), 1-16, doi: doi:10.3109/02656736.2015.1005178;
  • Attaluri, A., Seshadri, M., Mirpour, S., Wabler, M., Marinho, T., Furqan, M., Zhou, H., De Paoli, S., Gruettner, C., Gilson, W., DeWeese, T., Garcia, M., Ivkov, R., and Liapi, E., Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study, International Journal of Hyperthermia, 2016, 1-15, doi: 10.3109/02656736.2016.1159737;
  • Bordelon, D.E., Cornejo, C., Grüttner, C., Westphal, F., DeWeese, T.L., and Ivkov, R., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, Journal of Applied Physics, 2011, 109(12), 124904;
  • Branquinho, L., C., Carrião, M., S., Costa, A., S. , Zufelato, N., Sousa, M., H. , Miotto, R., Ivkov, R., and Bakuzis, A., F. , Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, Scientific Reports, 2013, 3, 2887, doi: 10.1038/srep02887;
  • Cuny, L., Herrling, M.P., Guthausen, G., Horn, H., and Delay, M., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, Journal of contaminant hydrology, 2015, 182, 51-62;
  • Dennis, C., Jackson, A., Borchers, J., Hoopes, P., Strawbridge, R., Foreman, A., Van Lierop, J., Grüttner, C., and Ivkov, R., Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology, 2009, 20(39), 395103;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Hoopes, P., Strawbridge, R., Pierce, Z., Goerntiz, E., and Lau, J., The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia, Journal of Physics D: Applied Physics, 2008, 41(13), 134020;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Lau, J., Goernitz, E., and Gruettner, C., The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles, Journal of Applied Physics, 2008, 103(7), 07A319;
  • Dennis, C.L., Krycka, K.L., Borchers, J.A., Desautels, R.D., van Lierop, J., Huls, N.F., Jackson, A.J., Gruettner, C., and Ivkov, R., Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field, Advanced Functional Materials, 2015, 25(27), 4300-11;
  • Fock, J., Jonasson, C., Johansson, C., and Hansen, M.F., Characterization of fine particles using optomagnetic measurements, Physical Chemistry Chemical Physics, 2017, 19(13), 8802-14;
  • Giustini, A., Ivkov, R., and Hoopes, P., Magnetic nanoparticle biodistribution following intratumoral administration, Nanotechnology, 2011, 22(34), 345101;
  • Giustini, A.J., Perreard, I., Rauwerdink, A.M., Hoopes, P.J., and Weaver, J.B., Noninvasive assessment of magnetic nanoparticle–cancer cell interactions, Integrative Biology, 2012, 4(10), 1283-8;
  • Giustini, A.J., Petryk, A.A., and Hoopes, P.J., Ionization radiation increases systemic nanoparticle tumor accumulation, Nanomedicine, 2012, 8(6), 818-21;
  • Grüttner, C., Müller, K., Teller, J., and Westphal, F., Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications, International Journal of Hyperthermia, 2013, 29(8), 777-89;
  • Gutierrez, L., Costo, R., Gruettner, C., Westphal, F., Gehrke, N., Heinke, D., Fornara, A., Pankhurst, Q.A., Johansson, C., and Veintemillas-Verdaguer, S., Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications, Dalton transactions, 2015, 44, 2943-52;
  • Hedayati, M., Abubaker-Sharif, B., Khattab, M., Razavi, A., Mohammed, I., Nejad, A., Wabler, M., Zhou, H., Mihalic, J., Gruettner, C., DeWeese, T., and Ivkov, R., An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles, International Journal of Hyperthermia, 2017, 1-9, doi: 10.1080/02656736.2017.1354403;
  • Hedayati, M., Thomas, O., Abubaker-Sharif, B., Zhou, H., Cornejo, C., Zhang, Y., Wabler, M., Mihalic, J., Grüttner, C., Westphal, F., Geyt, A., DeWeese, T.L., and Ivkov, R., The effect of cell-cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors, Nanomedicine, 2012, 8(1), 29-41;
  • Hoopes, P.J., Petryk, A.A., Gimi, B., Giustini, A.J., Weaver, J.B., Bischof, J., Chamberlain, R., and Garwood, M., In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution, Proceedings of SPIE, 2012, 8317;
  • Kasten, A., Grüttner, C., Kühn, J.-P., Bader, R., Pasold, J., and Frerich, B., Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells, PloS one, 2014, 9(9), e108055;
  • Kasten, A., Siegmund, B.J., Grüttner, C., Kühn, J.-P., and Frerich, B., Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types, Journal of Magnetism and Magnetic Materials, 2015, 380, 34-8, doi: 10.1016/j.jmmm.2014.08.044;
  • Krycka, K., Jackson, A., Borchers, J., Shih, J., Briber, R., Ivkov, R., Grüttner, C., and Dennis, C., Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis, Journal of Applied Physics, 2011, 109(7), 07B513;
  • Ludwig, F., Kazakova, O., Barquin, L.F., Fornara, A., Trahms, L., Steinhoff, U., Svedlindh, P., Wetterskog, E., Pankhurst, Q.A., and Southern, P., Magnetic, Structural, and Particle Size Analysis of Single-and Multi-Core Magnetic Nanoparticles, Magnetics, IEEE Transactions on, 2014, 50(11), 1-4;
  • Mukherjee, A., Castanares, M., Hedayati, M., Wabler, M., Trock, B., Kulkarni, P., Rodriguez, R., Getzenberg, R.H., DeWeese, T.L., and Ivkov, R., Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor, Nanomedicine, 2014, 9(18), 2729-43;
  • Østerberg, F.W., Rizzi, G., Henriksen, A.D., and Hansen, M.F., Planar Hall effect bridge geometries optimized for magnetic bead detection, Journal of Applied Physics, 2014, 115(18), 184505;
  • Ostrovska, L., Nanoparticle loaded stem cells and their use in MRI guided hyperthermia, US 2012/0283503 A1, 2012;
  • Pearce, J., Giustini, A., Stigliano, R., and Jack Hoopes, P., Magnetic Heating of Nanoparticles: The Importance of Particle Clustering to Achieve Therapeutic Temperatures, Journal of Nanotechnology in Engineering and Medicine, 2013, 4(1), 0110071-01100714, doi: 10.1115/1.4024904;
  • Perreard, I., Reeves, D., Zhang, X., Kuehlert, E., Forauer, E., and Weaver, J., Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times, Physics in medicine and biology, 2014, 59(5), 1109;
  • Petryk, A.A., Giustini, A.J., Gottesman, R.E., Trembly, B.S., and Hoopes, P.J., Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model, International Journal of Hyperthermia, 2013, 29(8), 819-27;
  • Ranzinger, F., Herrling, M.P., Lackner, S., Grande, V.W., Baniodeh, A., Powell, A.K., Horn, H., and Guthausen, G., Direct surface visualization of biofilms with high spin coordination clusters using Magnetic Resonance Imaging, Acta biomaterialia, 2016, 31, 167-77;
  • Reeves, D.B., and Weaver, J.B., Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field, Journal of physics D: Applied physics, 2014, 47(4), 045002;
  • Shubitidze, F., Kekalo, K., Stigliano, R., and Baker, I., Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy, Journal of Applied Physics, 2015, 117(9), 094302, doi: 10.1063/1.4907915;
  • Siegmund, B.J., Kasten, A., Kühn, J.-P., Winter, K., Grüttner, C., and Frerich, B., MRI-tracking of transplanted human ASC in a SCID mouse model, Journal of Magnetism and Magnetic Materials, 2017, 427, 151-5;
  • Soetaert, F., Kandala, S.K., Bakuzis, A., and Ivkov, R., Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles, Scientific Reports, 2017, 7(1), 6661, doi: 10.1038/s41598-017-07088-w;
  • Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R., and Artemov, D., Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content, International Journal of Hyperthermia, 2014, 30(3), 192-200;
  • Weaver, J.B., and Kuehlert, E., Measurement of magnetic nanoparticle relaxation time, Med Phys, 2012, 39(5), 2765-70;
  • Weaver, J.B., Zhang, X., Kuehlert, E., Toraya-Brown, S., Reeves, D.B., Perreard, I.M., and Fiering, S.N., Magnetic Nanoparticle Quantitation with Low Frequency Magnetic Fields: Compensating for Relaxation Effects, Nanotechnology, 2013, 24(32), 325502-, doi: 10.1088/0957-4484/24/32/325502;
  • Witte, K., Müller, K., Grüttner, C., Westphal, F., and Johansson, C., Particle size-and concentration-dependent separation of magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 2017, 427, 320-4;
  • Zadnik, P.L., Molina, C.A., Sarabia-Estrada, R., Groves, M.L., Wabler, M., Mihalic, J., McCarthy, E.F., Gokaslan, Z.L., Ivkov, R., and Sciubba, D., Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease: Laboratory investigation, Journal of Neurosurgery: Spine, 2014, 20(6), 740-50;
  • Artemov, D., Kato, Y., and SUDATH, H., Use of oscillating gradients of high magnetic field for specific destruction of cells labeled with magnetic nanoparticles, Patent WO2014107419A1, 2014;
  • Baiu, D.C., Artz, N.S., McElreath, M.R., Menapace, B.D., Hernando, D., Reeder, S.B., Grüttner, C., and Otto, M., High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles, Nanomedicine, 2015, 10(19), 2973-88, doi: 10.2217/nnm.15.138;
  • Behnam Azad, B., Banerjee, S.R., Pullambhatla, M., Lacerda, S., Foss, C.A., Wang, Y., Ivkov, R., and Pomper, M.G., Evaluation of a PSMA-targeted BNF nanoparticle construct, Nanoscale, 2015, 7(10), 4432-42, doi: 10.1039/C4NR06069E;
  • Grüttner, C., Müller, K., and Teller, J., Comparison of Strain-Promoted Alkyne-Azide Cycloaddition with Established Methods for Conjugation of Biomolecules to Magnetic Nanoparticles, Magnetics, IEEE Transactions on, 2013, 49(1), 172-6;
  • Østerberg, F.W., Rizzi, G., Zardán Gómez de la Torre, T., Strömberg, M., Strømme, M., Svedlindh, P., and Hansen, M., Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors, Biosensors and Bioelectronics, 2013, 40(1), 147-52;
  • Schrittwieser, S., Pelaz, B., Parak, W.J., Lentijo-Mozo, S., Soulantica, K., Dieckhoff, J., Ludwig, F., Guenther, A., Tschöpe, A., and Schotter, J., Homogeneous biosensing based on magnetic particle labels, Sensors, 2016, 16(6), 828;
  • Zardan Gomez de la Torre, T., Strömberg, M., Russell, C., Göransson, J., Nilsson, M., Svedlindh, P., and Stromme, M., Investigation of immobilization of functionalized magnetic nanobeads in rolling circle amplified DNA coils, J Phys Chem B, 2010, 114, 3707-13;
  • Zhu, Y., Kekalo, K., NDong, C., Huang, Y.Y., Shubitidze, F., Griswold, K.E., Baker, I., and Zhang, J.X., Magnetic‐Nanoparticle‐Based Immunoassays‐on‐Chip: Materials Synthesis, Surface Functionalization, and Cancer Cell Screening, Advanced Functional Materials, 2016;
  • Fock, J., Parmvi, M., Strömberg, M., Svedlindh, P., Donolato, M., and Hansen, M.F., Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein, Biosensors and Bioelectronics, 2016;
  • Al Faraj, A., Shaik, A., Afzal, S., Al-Muhsen, S., and Halwani, R., Specific targeting and noninvasive magnetic resonance imaging of an asthma biomarker in the lung using polyethylene glycol functionalized magnetic nanocarriers, Contrast media & molecular imaging, 2015;
  • Grüttner, C., Müller, K., Teller, J., Westphal, F., Foreman, A.R., and Ivkov, R., Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy, J Magn Magn Mat, 2007, 311(1), 181-6;
  • Natarajan, A., Gruettner, C., Ivkov, R., DeNardo, G., Mirick, G., Yuan, A., Foreman, A., and DeNardo, S., NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics, Bioconjugate chemistry, 2008, 19(6), 1211-8;
  • Zhang, J., Dewilde, A.H., Chinn, P., Foreman, A.R., Barry, S., Kanne, D., and Braunhut, S.J., Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cancer cells in vitro via hyperthermia, Int J Hyperthermia, 2011, 27(7), 682-97;
  • Bejhed, R.S., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., Strömberg, M., Bejhed, R.S., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Turn-on optomagnetic bacterial DNA sequence detection using volume-amplified magnetic nanobeads, Biosensors and Bioelectronics, 2015, 66, 405-11, doi: 10.1016/j.bios.2014.11.048;
  • Bejhed, R.S., Strømme, M., Svedlindh, P., Ahlford, A., and Strömberg, M., Magnetic nanobeads present during enzymatic amplification and labeling for a simplified DNA detection protocol based on AC susceptometry, AIP Advances, 2015, 5(12), 127139;
  • Donolato, M., Antunes, P., Bejhed, R.S., Zardán Gómez de la Torre, T., Østerberg, F.W., Strömberg, M., Nilsson, M., Strømme, M., Svedlindh, P., and Hansen, M.F., Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics, Analytical chemistry, 2015, 87(3), 1622-9;
  • Donolato, M., Antunes, P., de la Torre, T.Z.G., Hwu, E.-T., Chen, C.-H., Burger, R., Rizzi, G., Bosco, F.G., Strømme, M., and Boisen, A., Quantification of rolling circle amplified DNA using magnetic nanobeads and a Blu-ray optical pick-up unit, Biosensors and Bioelectronics, 2015, 67, 649-55;
  • Engström, A., de la Torre, T.Z.G., Strømme, M., Nilsson, M., and Herthnek, D., Detection of rifampicin resistance in Mycobacterium tuberculosis by padlock probes and magnetic nanobead-based readout, PloS one, 2013, 8(4), e62015;
  • Mezger, A., Fock, J., Antunes, P., Østerberg, F.W., Boisen, A., Nilsson, M., Hansen, M.F., Ahlford, A., and Donolato, M., Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples, ACS Nano, 2015;
  • Minero, G.A.S., Fock, J., McCaskill, J.S., and Hansen, M.F., Optomagnetic detection of DNA triplex nanoswitches, Analyst, 2017, 142(4), 582-5;
  • Minero, G.A.S., Nogueira, C., Rizzi, G., Tian, B., Fock, J., Donolato, M., Strömberg, M., and Hansen, M.F., Sequence-specific validation of LAMP amplicons in real-time optomagnetic detection of Dengue serotype 2 synthetic DNA, Analyst, 2017, 142(18), 3441-50;
  • Strömberg, M., Zardán Gómez de la Torre, T., Nilsson, M., Svedlindh, P., and Strømme, M., A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer, Biotechnology J, 2014, 9(1), 137-45, doi: 10.1002/biot.201300348;
  • Tian, B., Bejhed, R.S., Svedlindh, P., and Strömberg, M., Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection, Biosensors and Bioelectronics, 2016, 77, 32-9;
  • Tian, B., Ma, J., Zardán Gómez de la Torre, T., Bálint, A.d.m., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout, Acs Sensors, 2016, 1(10), 1228-34;
  • Tian, B., Qiu, Z., Ma, J., de la Torre, T.Z.G., Johansson, C., Svedlindh, P., and Strömberg, M., Attomolar Zika virus oligonucleotide detection based on loop-mediated isothermal amplification and AC susceptometry, Biosensors and Bioelectronics, 2016, 86, 420-5;
  • Uddin, R., Burger, R., Donolato, M., Fock, J., Creagh, M., Hansen, M.F., and Boisen, A., Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano-and micro-sized magnetic beads, Biosensors and Bioelectronics, 2016, 85, 351-7;
Sub categories: