plain

Plain BNF-Dextran or BNF-Starch particles have an unmodified dextran or hydroxyethyl starch surface. They are thermally blocked at room temperature and show specific interaction with alternating magnetic fields (Dennis et al. 2008 und 2009; Krycka et al., 2011; Bordelon et al., 2011). The 100 nm particles can be separated with conventional permanent magnets, while the 80 nm particles have to be separated in high gradient magnetic fields. BNF-particles can easily be filtered through 0.22 µm filters. They are supplied in water without any surfactants.
 

Showing all 4 results

References
  • Ahrentorp, F., Astalan, A., Blomgren, J., Jonasson, C., Wetterskog, E., Svedlindh, P., Lak, A., Ludwig, F., van IJzendoorn, L.J., and Westphal, F., Effective particle magnetic moment of multi-core particles, Journal of Magnetism and Magnetic Materials, 2015, 380, 221-6;
  • Al Faraj, A., Shaik, A., Shaik, A., and Al Sayed, B., Enhanced magnetic delivery of superparamagnetic iron oxide nanoparticles to the lung monitored using noninvasive MR, Journal of Nanoparticle Research, 2014, 16(10), 1-11, doi: 10.1007/s11051-014-2667-9;
  • Attaluri, A., Kandala, S.K., Wabler, M., Zhou, H., Cornejo, C., Armour, M., Hedayati, M., Zhang, Y., DeWeese, T.L., Herman, C., and Ivkov, R., Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer, International Journal of Hyperthermia, 0(0), 1-16, doi: doi:10.3109/02656736.2015.1005178;
  • Attaluri, A., Seshadri, M., Mirpour, S., Wabler, M., Marinho, T., Furqan, M., Zhou, H., De Paoli, S., Gruettner, C., Gilson, W., DeWeese, T., Garcia, M., Ivkov, R., and Liapi, E., Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study, International Journal of Hyperthermia, 2016, 1-15, doi: 10.3109/02656736.2016.1159737;
  • Bordelon, D.E., Cornejo, C., Grüttner, C., Westphal, F., DeWeese, T.L., and Ivkov, R., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, Journal of Applied Physics, 2011, 109(12), 124904;
  • Branquinho, L., C., Carrião, M., S., Costa, A., S. , Zufelato, N., Sousa, M., H. , Miotto, R., Ivkov, R., and Bakuzis, A., F. , Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, Scientific Reports, 2013, 3, 2887, doi: 10.1038/srep02887;
  • Cuny, L., Herrling, M.P., Guthausen, G., Horn, H., and Delay, M., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, Journal of contaminant hydrology, 2015, 182, 51-62;
  • Dennis, C., Jackson, A., Borchers, J., Hoopes, P., Strawbridge, R., Foreman, A., Van Lierop, J., Grüttner, C., and Ivkov, R., Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology, 2009, 20(39), 395103;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Hoopes, P., Strawbridge, R., Pierce, Z., Goerntiz, E., and Lau, J., The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia, Journal of Physics D: Applied Physics, 2008, 41(13), 134020;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Lau, J., Goernitz, E., and Gruettner, C., The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles, Journal of Applied Physics, 2008, 103(7), 07A319;
  • Dennis, C.L., Krycka, K.L., Borchers, J.A., Desautels, R.D., van Lierop, J., Huls, N.F., Jackson, A.J., Gruettner, C., and Ivkov, R., Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field, Advanced Functional Materials, 2015, 25(27), 4300-11;
  • Fock, J., Jonasson, C., Johansson, C., and Hansen, M.F., Characterization of fine particles using optomagnetic measurements, Physical Chemistry Chemical Physics, 2017, 19(13), 8802-14;
  • Giustini, A., Ivkov, R., and Hoopes, P., Magnetic nanoparticle biodistribution following intratumoral administration, Nanotechnology, 2011, 22(34), 345101;
  • Giustini, A.J., Perreard, I., Rauwerdink, A.M., Hoopes, P.J., and Weaver, J.B., Noninvasive assessment of magnetic nanoparticle–cancer cell interactions, Integrative Biology, 2012, 4(10), 1283-8;
  • Giustini, A.J., Petryk, A.A., and Hoopes, P.J., Ionization radiation increases systemic nanoparticle tumor accumulation, Nanomedicine, 2012, 8(6), 818-21;
  • Grüttner, C., Müller, K., Teller, J., and Westphal, F., Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications, International Journal of Hyperthermia, 2013, 29(8), 777-89;
  • Gutierrez, L., Costo, R., Gruettner, C., Westphal, F., Gehrke, N., Heinke, D., Fornara, A., Pankhurst, Q.A., Johansson, C., and Veintemillas-Verdaguer, S., Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications, Dalton transactions, 2015, 44, 2943-52;
  • Hedayati, M., Abubaker-Sharif, B., Khattab, M., Razavi, A., Mohammed, I., Nejad, A., Wabler, M., Zhou, H., Mihalic, J., Gruettner, C., DeWeese, T., and Ivkov, R., An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles, International Journal of Hyperthermia, 2017, 1-9, doi: 10.1080/02656736.2017.1354403;
  • Hedayati, M., Thomas, O., Abubaker-Sharif, B., Zhou, H., Cornejo, C., Zhang, Y., Wabler, M., Mihalic, J., Grüttner, C., Westphal, F., Geyt, A., DeWeese, T.L., and Ivkov, R., The effect of cell-cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors, Nanomedicine, 2012, 8(1), 29-41;
  • Hoopes, P.J., Petryk, A.A., Gimi, B., Giustini, A.J., Weaver, J.B., Bischof, J., Chamberlain, R., and Garwood, M., In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution, Proceedings of SPIE, 2012, 8317;
  • Kasten, A., Grüttner, C., Kühn, J.-P., Bader, R., Pasold, J., and Frerich, B., Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells, PloS one, 2014, 9(9), e108055;
  • Kasten, A., Siegmund, B.J., Grüttner, C., Kühn, J.-P., and Frerich, B., Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types, Journal of Magnetism and Magnetic Materials, 2015, 380, 34-8, doi: 10.1016/j.jmmm.2014.08.044;
  • Krycka, K., Jackson, A., Borchers, J., Shih, J., Briber, R., Ivkov, R., Grüttner, C., and Dennis, C., Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis, Journal of Applied Physics, 2011, 109(7), 07B513;
  • Ludwig, F., Kazakova, O., Barquin, L.F., Fornara, A., Trahms, L., Steinhoff, U., Svedlindh, P., Wetterskog, E., Pankhurst, Q.A., and Southern, P., Magnetic, Structural, and Particle Size Analysis of Single-and Multi-Core Magnetic Nanoparticles, Magnetics, IEEE Transactions on, 2014, 50(11), 1-4;
  • Mukherjee, A., Castanares, M., Hedayati, M., Wabler, M., Trock, B., Kulkarni, P., Rodriguez, R., Getzenberg, R.H., DeWeese, T.L., and Ivkov, R., Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor, Nanomedicine, 2014, 9(18), 2729-43;
  • Østerberg, F.W., Rizzi, G., Henriksen, A.D., and Hansen, M.F., Planar Hall effect bridge geometries optimized for magnetic bead detection, Journal of Applied Physics, 2014, 115(18), 184505;
  • Ostrovska, L., Nanoparticle loaded stem cells and their use in MRI guided hyperthermia, US 2012/0283503 A1, 2012;
  • Pearce, J., Giustini, A., Stigliano, R., and Jack Hoopes, P., Magnetic Heating of Nanoparticles: The Importance of Particle Clustering to Achieve Therapeutic Temperatures, Journal of Nanotechnology in Engineering and Medicine, 2013, 4(1), 0110071-01100714, doi: 10.1115/1.4024904;
  • Perreard, I., Reeves, D., Zhang, X., Kuehlert, E., Forauer, E., and Weaver, J., Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times, Physics in medicine and biology, 2014, 59(5), 1109;
  • Petryk, A.A., Giustini, A.J., Gottesman, R.E., Trembly, B.S., and Hoopes, P.J., Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model, International Journal of Hyperthermia, 2013, 29(8), 819-27;
  • Ranzinger, F., Herrling, M.P., Lackner, S., Grande, V.W., Baniodeh, A., Powell, A.K., Horn, H., and Guthausen, G., Direct surface visualization of biofilms with high spin coordination clusters using Magnetic Resonance Imaging, Acta biomaterialia, 2016, 31, 167-77;
  • Reeves, D.B., and Weaver, J.B., Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field, Journal of physics D: Applied physics, 2014, 47(4), 045002;
  • Shubitidze, F., Kekalo, K., Stigliano, R., and Baker, I., Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy, Journal of Applied Physics, 2015, 117(9), 094302, doi: 10.1063/1.4907915;
  • Siegmund, B.J., Kasten, A., Kühn, J.-P., Winter, K., Grüttner, C., and Frerich, B., MRI-tracking of transplanted human ASC in a SCID mouse model, Journal of Magnetism and Magnetic Materials, 2017, 427, 151-5;
  • Soetaert, F., Kandala, S.K., Bakuzis, A., and Ivkov, R., Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles, Scientific Reports, 2017, 7(1), 6661, doi: 10.1038/s41598-017-07088-w;
  • Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R., and Artemov, D., Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content, International Journal of Hyperthermia, 2014, 30(3), 192-200;
  • Weaver, J.B., and Kuehlert, E., Measurement of magnetic nanoparticle relaxation time, Med Phys, 2012, 39(5), 2765-70;
  • Weaver, J.B., Zhang, X., Kuehlert, E., Toraya-Brown, S., Reeves, D.B., Perreard, I.M., and Fiering, S.N., Magnetic Nanoparticle Quantitation with Low Frequency Magnetic Fields: Compensating for Relaxation Effects, Nanotechnology, 2013, 24(32), 325502-, doi: 10.1088/0957-4484/24/32/325502;
  • Witte, K., Müller, K., Grüttner, C., Westphal, F., and Johansson, C., Particle size-and concentration-dependent separation of magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 2017, 427, 320-4;
  • Zadnik, P.L., Molina, C.A., Sarabia-Estrada, R., Groves, M.L., Wabler, M., Mihalic, J., McCarthy, E.F., Gokaslan, Z.L., Ivkov, R., and Sciubba, D., Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease: Laboratory investigation, Journal of Neurosurgery: Spine, 2014, 20(6), 740-50;