NH2

nanomag®-D-Partikel mit Durchmessern von 130 nm, 250 nm und 500 nm (Separation am Permanentmagneten) werden mit Aminogruppen auf der Oberfläche für die kovalente Bindung von Proteinen, Antikörpern oder anderen Molekülen angeboten. Die funktionalisierten nanomag®-D-Partikel werden in Wasser ohne Zusatz von Detergenzien geliefert.
So können verschiedene Konjugationsmethoden direkt angewendet werden, z.B. die Maleimid- oder SPDP-Funktionalisierung von Aminogruppen zur Bindung SH-funktionalisierter Biomoleküle (siehe Technote 201 and Technote 202).

Showing all 3 results

Referenzen
  • Dalslet, B.T., Donolato, M., and Hansen, M.F., Planar Hall effect sensor with magnetostatic compensation layer, Sensors and Actuators A: Physical, 2012, 174, 1-8;
  • Donolato, M., Sogne, E., Dalslet, B.T., Cantoni, M., Petti, D., Cao, J., Cardoso, F., Cardoso, S., Freitas, P., and Hansen, M.F., On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions, Applied Physics Letters, 2011, 98(7), 073702;
  • Gregory, C., and Pound, J., Cell separation technique, US 2011/0256581 A1, 2011;
  • Marcos-Campos, I., Asin, L., Torres, T., Marquina, C., Tres, A., Ibarra, M., and Goya, G.F., Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells, Nanotechnology, 2011, 22(20), 205101;
  • Mondalek, F.G., Zhang, Y.Y., Kropp, B., Kopke, R.D., Ge, X., Jackson, R.L., and Dormer, K.J., The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field, J Nanobiotechnology, 2006, 4(4);
  • Mu, Q., Li, Z., Li, X., Mishra, S.R., Zhang, B., Si, Z., Yang, L., Jiang, W., and Yan, B., Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells, The Journal of Physical Chemistry C, 2009, 113(14), 5390-5;
  • Robatjazi, S.-M., Shojaosadati, S.-A., Khalilzadeh, R., and Farahani, E., Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatalysis and Biotransformation, 2010, 304-12;
  • Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Strømme, M., Sensitive molecular diagnostics using volume-amplified magnetic nanobeads, Nano letters, 2008, 8(3), 816-21;
  • Strömberg, M., Gunnarsson, K., Johansson, H., Nilsson, M., Svedlindh, P., and Strømme, M., Interbead interactions within oligonucleotide functionalized ferrofluids suitable for magnetic biosensor applications, Journal of Physics D: Applied Physics, 2007, 40(5), 1320;
  • Strömberg, M., Gunnarsson, K., Valizadeh, S., Svedlindh, P., and Strömme, M., Aging phenomena in ferrofluids suitable for magnetic biosensor applications, Journal of applied physics, 2007, 101(2), 023911;
  • Strömberg, M., Zardan Gomez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Stromme, M., and Svedlindh, P., Microscopic mechanisms influencing the volume amplified magnetic nanobead detection assay, Biosensors and Bioelectronics, 2008, 24, 696-703;
  • Strömberg, M., Zardan Gomez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Stromme, M., Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay, ANALYTICAL CHEMISTRY, 2009, 81, 3398-406;
  • Zardan Gomez de la Torre, T., Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Stromme, M., Molecular diagnostics using magnetic nanobeads, J Physics: Conference Series 200, 2010, 81, 3398- 406;
  • Zardan Gomez de la Torre, T., Strömberg, M., Russell, C., Göransson, J., Nilsson, M., Svedlindh, P., and Stromme, M., Investigation of immobilization of functionalized magnetic nanobeads in rolling circle amplified DNA coils, J Phys Chem B, 2010, 114, 3707-13;