nanomag®-D

Magnetische Dextran-Nanopartikel (nanomag®-D)

  • sind mit Durchmessern von 130 nm, 250 nm und 500 nm erhältlich,
  • können am Permanentmagneten separiert werden ,
  • werden mittels Core-Shell-Methode mit einem Magnetitkern und einer Dextranhülle hergestellt,
  • bestehen aus 75-80% (w/w) Magnetit in einer Matrix aus Dextran (40.000 Da),
  • werden mit den Oberflächengruppen OH (plain), NH2, PEG-NH2 und COOH bzw. PEG-COOH für die kovalente Bindung von Proteinen, Antikörpern und anderen Molekülen angeboten,
  • sind mit kovalent gebundenen Proteinen (Avidin, Streptavidin, Protein A) oder anderen Biomolekülen (Biotin) erhältlich,
  • können auf Anfrage mit kovalent gebundenen Antikörpern hergestellt werden,
  • werden mit dem Nickel(II) Chelator Nitrilotriessigsäure (NTA) oder gebrauchsfertig mit dem entsprechenden Nickel-Komplex (Ni-NTA) für die Bindung von Histidin-gelabelten Proteinen angeboten,
  • sind mit verschiedenen hydrophilen Oberflächen erhältlich (PEG 300, PEG 2000, PEG-NH2 oder PEG-COOH).

 

Zeigt alle 37 Ergebnisse

Referenzen
  • Kirch, J., Schneider, A., Abou, B., Hopf, A., Schaefer, U.F., Schneider, M., Schall, C., Wagner, C., and Lehr, C.-M., Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus, Proceedings of the National Academy of Sciences, 2012, 109(45), 18355-60;
  • Astalan, A.P., Ahrentorp, F., Johansson, C., Larsson, K., and Krozer, A., Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles, Biosensors and Bioelectronics, 2004, 19(8), 945-51;
  • Benkoski, J.J., Breidenich, J.L., Uy, O.M., Hayes, A.T., Deacon, R.M., Land, H.B., Spicer, J.M., Keng, P.Y., and Pyun, J., Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies, J Mater Chem, 2011, 21(20), 7314-25;
  • Buchegger, P., Sauer, U., Toth-Szekely, H., and Preininger, C., Miniaturized protein microarray with internal calibration as point-of-care device for diagnosis of neonatal sepsis, Sensors, 2012, 12, 1494-508;
  • Dalslet, B.T., Damsgaard, C., Donolato, M., Stromme, M., Strömberg, M., Svedlindh, P., and Hansen, M.F., Bead magnetorelaxometry with an on-chip magnetoresistive sensor, Lab Chip, 2011, 11, 296-302;
  • Donolato, M., Lofink, F., Hankemeier, S., Porro, J., Oepen, H., and Vavassori, P., Characterization of domain wall–based traps for magnetic beads separation, Journal of Applied Physics, 2012, 111(7), 07B336;
  • Eveness, J., Kiely, J., Hawkins, P., Wraith, P., and Luxton, R., Evaluation of paramagnetic particles for use in a resonant coil magnetometer based magneto-immunoassay, Sensors and Actuators B: Chemical, 2009, 139(2), 538-42;
  • Glatz, A., Bastin, M.E., Kiker, A.J., Deary, I.J., Wardlaw, J.M., and Hernández, M.C.V., Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities, NeuroImage, 2015, 105, 332-46;
  • Hedayati, M., Abubaker-Sharif, B., Khattab, M., Razavi, A., Mohammed, I., Nejad, A., Wabler, M., Zhou, H., Mihalic, J., Gruettner, C., DeWeese, T., and Ivkov, R., An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles, International Journal of Hyperthermia, 2017, 1-9, doi: 10.1080/02656736.2017.1354403;
  • Lipp, P., Müller, U., Hetzer, B., and Wagner, T., Characterization of nanoparticulate fouling and breakthrough during low-pressure membrane filtration, Desalination and Water Treatment, 2009, 9(1-3), 234-40;
  • Metaxas, P.J., Sushruth, M., Begley, R.A., Ding, J., Woodward, R.C., Maksymov, I.S., Albert, M., Wang, W., Fangohr, H., and Adeyeye, A.O., Sensing magnetic nanoparticles using nano-confined ferromagnetic resonances in a magnonic crystal, Applied Physics Letters, 2015, 106(23), 232406;
  • Mizuki, T., Sawai, M., Nagaoka, Y., Morimoto, H., and Maekawa, T., Activity of lipase and chitinase immobilized on superparamagnetic particles in a rotational magnetic field, Plos ONE, 2013, 8(6), e66528;
  • Mizuki, T., Watanabe, N., Nagaoka, Y., Fukushima, T., Morimoto, H., Usami, R., and Maekawa, T., Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field, Biochem Biophys Res Comm, 2010, 779-82;
  • Osterberg, F.W., Dalslet, B.T., Snakenborg, D., Johansson, C., and Hansen, M.F., Chip-based measurements of brownian relaxation of magnetic beads using a planar hall effect magnetic field sensor, AIP Conf Proc, 2012, 1311, 176-83;
  • Saari, M., Sakai, K., Kiwa, T., Sasayama, T., Yoshida, T., and Tsukada, K., Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high-T c superconducting quantum interference device magnetometer, Journal of Applied Physics, 2015, 117(17), 17B321;
  • Selt, M., Tennstaedt, A., Beyrau, A., Nelles, M., Schneider, G., Löwik, C., and Hoehn, M., In Vivo Non-Invasive Tracking of Macrophage Recruitment to Experimental Stroke, PloS one, 2016, 11(6), e0156626;
  • Seo, Y., Ikemoto, E., Yoshida, A., and Kogure, K., Particle capture by marine bacteria, Aquatic microbial ecology, 2007, 49(3), 243-53;
  • Ström, V., Hultenby, K., Grüttner, C., Teller, J., Xu, B., and Holgersson, J., A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer, Nanotechnology, 2004, 15(5), 457;
  • Sushruth, M., Ding, J., Duczynski, J., Woodward, R.C., Begley, R., Fangohr, H., Fuller, R.O., Adeyeye, A.O., Kostylev, M., and Metaxas, P.J., Resonance-based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets, arXiv preprint arXiv:160405835, 2016;
  • Tseng, P., Judy, J.W., and Di Carlo, D., Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior, Nature Methods, 2012, 9(11), 1113-9;
  • Wilson, R.J., Hu, W., Wong Po Fu, C., Koh, A.L., Gaster, R.S., Earhart, C.M., and al., e., Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells, Journal of Magnetism and Magnetic Materials, 2009, 321(10), 1452-8;
  • Basak, S., Brogan, D., Dietrich, H., Ritter, R., Dacey, R.G., and Biswas, P., Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain, Int J Nanomed, 2009, 4, 9;
  • Jia, J.-M., Chowdary, P.D., Gao, X., Ci, B., Li, W., Mulgaonkar, A., Plautz, E.J., Hassan, G., Kumar, A., and Stowe, A.M., Control of cerebral ischemia with magnetic nanoparticles, Nature methods, 2017, 14(2), 160-6;
  • Dalslet, B.T., Donolato, M., and Hansen, M.F., Planar Hall effect sensor with magnetostatic compensation layer, Sensors and Actuators A: Physical, 2012, 174, 1-8;
  • Donolato, M., Sogne, E., Dalslet, B.T., Cantoni, M., Petti, D., Cao, J., Cardoso, F., Cardoso, S., Freitas, P., and Hansen, M.F., On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions, Applied Physics Letters, 2011, 98(7), 073702;
  • Gregory, C., and Pound, J., Cell separation technique, US 2011/0256581 A1, 2011;
  • Marcos-Campos, I., Asin, L., Torres, T., Marquina, C., Tres, A., Ibarra, M., and Goya, G.F., Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells, Nanotechnology, 2011, 22(20), 205101;
  • Mondalek, F.G., Zhang, Y.Y., Kropp, B., Kopke, R.D., Ge, X., Jackson, R.L., and Dormer, K.J., The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field, J Nanobiotechnology, 2006, 4(4);
  • Mu, Q., Li, Z., Li, X., Mishra, S.R., Zhang, B., Si, Z., Yang, L., Jiang, W., and Yan, B., Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells, The Journal of Physical Chemistry C, 2009, 113(14), 5390-5;
  • Robatjazi, S.-M., Shojaosadati, S.-A., Khalilzadeh, R., and Farahani, E., Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatalysis and Biotransformation, 2010, 304-12;
  • Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Strømme, M., Sensitive molecular diagnostics using volume-amplified magnetic nanobeads, Nano letters, 2008, 8(3), 816-21;
  • Strömberg, M., Gunnarsson, K., Johansson, H., Nilsson, M., Svedlindh, P., and Strømme, M., Interbead interactions within oligonucleotide functionalized ferrofluids suitable for magnetic biosensor applications, Journal of Physics D: Applied Physics, 2007, 40(5), 1320;
  • Strömberg, M., Gunnarsson, K., Valizadeh, S., Svedlindh, P., and Strömme, M., Aging phenomena in ferrofluids suitable for magnetic biosensor applications, Journal of applied physics, 2007, 101(2), 023911;
  • Strömberg, M., Zardan Gomez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Stromme, M., and Svedlindh, P., Microscopic mechanisms influencing the volume amplified magnetic nanobead detection assay, Biosensors and Bioelectronics, 2008, 24, 696-703;
  • Strömberg, M., Zardan Gomez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Stromme, M., Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay, ANALYTICAL CHEMISTRY, 2009, 81, 3398-406;
  • Zardan Gomez de la Torre, T., Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Stromme, M., Molecular diagnostics using magnetic nanobeads, J Physics: Conference Series 200, 2010, 81, 3398- 406;
  • Zardan Gomez de la Torre, T., Strömberg, M., Russell, C., Göransson, J., Nilsson, M., Svedlindh, P., and Stromme, M., Investigation of immobilization of functionalized magnetic nanobeads in rolling circle amplified DNA coils, J Phys Chem B, 2010, 114, 3707-13;
  • Asin, L., Ibarra, M.R., Tres, A., and Goya, G.F., Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration, Pharm Res, 2012, 29, 1319-27;
  • Dixon, J.E., Osman, G., Morris, G.E., Markides, H., Rotherham, M., Bayoussef, Z., El Haj, A.J., Denning, C., and Shakesheff, K.M., Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides, Proceedings of the National Academy of Sciences, 2016, 113(3), E291-E9;
  • Gilmer, L., Mandal, A., Wolkowitz, M.J., Klotz, K.L., and Herr, J.C., Compositions and methods for identifying sperm for forensic applications, US 0318250, 2008;
  • Kuramitz, H., Magnetic microbead-based electrochemical immunoassays, Anal Bioanal Chem, 2009, 394, 61-9;
  • Ma, Y.-H., Chen, S.-Y., Tu, S.-J., Yang, H.-W., and Liu, H.-L., Manipulation of magnetic nanoparticle retention and hemodynamic consequences in microcirculation: assessment by laser speckle imaging, Int J of Nanomedicine, 2012, 7, 2817;
  • Milano, G., Musumeci, D., Gaglione, M., and Messere, A., An alternative strategy to synthesize PNA and DNA magnetic conjugates forming nanoparticle assembly based on PNA/DNA duplexes, Molecular BioSystems, 2010, 6(3), 553-61;
  • Nair, B.G., Nagaoka, Y., Morimoto, H., Yoshida, Y., Maekawa, T., and Kumar, D.S., Aptamer conjugated magnetic nanoparticles as nanosurgeons, Nanotechnology, 2010, 21(45), 455102;
  • Takamura, T., Ko, P.J., Sharma, J., Yukino, R., Ishizawa, S., and Sandhu, A., Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications, Sensors, 2015, 15(6), 12983-98;
  • Mair, L., Ford, K., Alam Md., R., Kole, R., Fisher, M., and Superfine, R., Size-Uniform 200 nm particles: fabrication and application to magnetofection, J Biomed Nanotechnol, 2009, 5(2), 182;
  • Zamora, D.O., DeSilva, M.N., Cornell, L.E., Glickman, R.D., Wang, H.-C.H., and Johnson, A.J., Characterization of Magnetic Nanoparticle Loaded Corneal Endothelial Cells, Investigative Ophtalmology and Visual Science, 2014, 55(5), 1442;
  • Bejhed, R.S., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., Strömberg, M., Bejhed, R.S., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Turn-on optomagnetic bacterial DNA sequence detection using volume-amplified magnetic nanobeads, Biosensors and Bioelectronics, 2015, 66, 405-11, doi: 10.1016/j.bios.2014.11.048;
  • Laitinen, M.P.A., Salmela, J., Gilbert, L., Kaivola, R., Tikkala, T., Oker-Blom, C., Pekola, J., and Vuento, M., Method and apparatus using selected superparamagnetic labels for rapid quantification of immunochromatographic tests, Nanotechnology, Science and Applications, 2009, 2, 13-20;
  • Strömberg, M., Zardán Gómez de la Torre, T., Nilsson, M., Svedlindh, P., and Strømme, M., A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer, Biotechnology J, 2014, 9(1), 137-45, doi: 10.1002/biot.201300348;
  • Cardoso, F.A., Martins, V.C., Fonseca, L.P., Germano, J., Sousa, L.A., Piedade, M.S., and Freitas, P.P., Spintronic microfluidic platform for biomedical and environmental applications, 2010, 7653, 765306--3;
  • Chatterjee, E., Marr, T., Dhagat, P., and Remcho, V., A microfluidic sensor based on ferromagnetic resonance induced in magnetic bead labels, Sensors and Actuators B, 2011, doi:10.1016/j.snb.2011.02.012;
  • Donolato, M., Antunes, P., Bejhed, R.S., Zardán Gómez de la Torre, T., Østerberg, F.W., Strömberg, M., Nilsson, M., Strømme, M., Svedlindh, P., and Hansen, M.F., Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics, Analytical chemistry, 2015, 87(3), 1622-9;
  • Germano, J., Martins, V.C., Cardoso, F.A., Almeida, T.M., Sousa, L., Freitas, P.P., and Piedade, M.S., A portable and autonomous magnetic detection platform for biosensing, Sensors, 2009, 9, 4119-37;
  • Graham, D.L., Ferreira, H.A., and Freitas, P.P., Magnetoresistive-based biosensors and biochips, Trends in Biotechnology, 2004, 22(9), 455-62;
  • Konno, H., Isu, A., Kim, Y., Murakami-Fuse, T., Sugano, Y., and Hisabori, T., Characterization of the relationship between ADP- and e- induced inhibition i cyanobacterial F1 -ATpase, J Biol Chem, 2011, 286(15), 13423-9;
  • Liu, Y., Jin, W., Yang, Y., and Wang, Z., Micromagnetic simulation for detection of a single magnetic microbead or nanobead by spin-valve sensors, Journal of applied physics, 2006, 99(8), 08G102;
  • Skottrup, P.D., Fought Hansen, M., Moresco Lange, J., Deryabina, M., Svendsen, W.E., Havsteen Jakobsen, M., and Dufva, M., Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray, Acta Biomater, 2010, 6, 3936-46;
  • Tian, B., Wetterskog, E., Qiu, Z., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation, Biosensors and Bioelectronics, 2017, 98, 285-91;
  • Fernandes, E., Martins, V., Nóbrega, C., Carvalho, C., Cardoso, F., Cardoso, S., Dias, J., Deng, D., Kluskens, L., and Freitas, P., A bacteriophage detection tool for viability assessment of Salmonella cells, Biosensors and Bioelectronics, 2014, 52, 239-46;
  • Tian, B., Bejhed, R.S., Svedlindh, P., and Strömberg, M., Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection, Biosensors and Bioelectronics, 2016, 77, 32-9;
  • Hughes, S., McBain, S.C., Dobson, J., and El Haj, A.J., Selective activation of mechanosensitive ion channels using magnetic particles, J R Soc Interface, 2008, 5, 855-63;
  • Grüttner, C., Teller, J., Schütt, W., Westphal, F., Schümichen, C., and Paulke, B.R., Preparation and Characterization of Magnetic Nanospheres for In Vivo Application, Scientific and Clinical Applications of Magnetic Carriers, Ed U Häfeli, W Schütt, J Teller, M Zborowski, 1997, 53-68;
  • Hallahan, D.E., Geng, L., and Giorgio, T.D., Targeted drug delivery methods, 2003;
Unterkategorien: