Fluoreszente Partikel

Fluoreszente Partikel werden in einem Größenbereich von 10 nm bis 20 µm in den Emissionsbereichen blau, grün und rot bereitgestellt. Entsprechend den Anwendungsgebieten stehen (bio)organische oder anorganische Matrixmaterialien zur Verfügung:

Polystyrol/Polymethacrylat (micromer®-F)
Silikat (sicastar®-F)

Bitte wählen Sie einen Produkttyp aus, um Ihre spezielle Auswahl der Oberflächenfunktionalisierung und der Partikelgröße zu treffen.

Zeigt alle 138 Ergebnisse

  • Inokuchi, Y., Hironaka, K., Fujisawa, T., Tozuka, Y., Tsuruma, K., Shimazawa, M., Takeuchi, H., and Hara, H., Physicochemical properties affecting retinal drug/coumarin-6 delivery from nanocarrier systems via eyedrop administration, Investigative ophthalmology & visual science, 2010, 51(6), 3162-70;
  • Pritz, C.O., Bitsche, M., Salvenmoser, W., Dudás, J., Schrott-Fischer, A., and Glueckert, R., Endocytic trafficking of silica nanoparticles in a cell line derived from the organ of Corti, Nanomedicine, 2013, 8(2), 239-52;
  • Vonnemann, J., Liese, S., Kuehne, C., Ludwig, K., Dernedde, J., Böttcher, C., Netz, R.R., and Haag, R., Size Dependence of Steric Shielding and Multivalency Effects for Globular Binding Inhibitors, Journal of the American Chemical Society, 2015, 137(7), 2572-9;
  • Moeller, S., Kegler, R., Sternberg, K., and Mundkowski, R.G., Influence of sirolimus-loaded nanoparticles on physiological functions of native human polymorphonuclear neutrophils, Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(8), 1293-300;
  • Lapinski, J., and Tunnacliffe, A., Reduction of suspended biomass in municipal wastewater using bdelloid rotifers, Water Research, 2003, 37, 2027-34;
  • Matsumoto, S., Yamaguchi, S., Ueno, S., Komatsu, H., Ikeda, M., Ishizzka, K., Iko, Y., Tabata, K., Aoki, H., Ito, S., Noji, H., and Hamachi, I., Photo Gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials, Chem Eur J, 2008, 14, 3977-86;
  • Miyazaki, J., Kuriyama, Y., Miyamoto, A., Tokumoto, H., Konishi, Y., and Nomura, T., Adhesion and internalization of functionalized polystyrene latex nanoparticles toward the yeast Saccharomyces cerevisiae, Advanced Powder Technology, 2014, 25(4), 1394-7, doi: http://dx.doi.org/10.1016/j.apt.2014.06.014;
  • Pauchard, L., Mermet-Guyennet, M., and Giorgiutti-Dauphiné, F., Invagination process induced by 2D desiccation of colloidal solutions, Chemical Engineering and Processing: Process Intensification, 2011, 50(5), 483-5;
  • Qu, X., and Komatsu, T., Molecular capture in protein nanotubes, ACS Nano, 2010, 4(1), 563-73;
  • Kortmann, M., Analyse der Rolle der C- terminalen Domänen des großen Adhäsins SiiE für die Bindung an polarisierte Epithelzellen, Universität Osnabrück, 2011;
  • Liße, D., Wilkens, V., You, C., Busch, K., and Piehler, J., Selective targeting of fluorescent nanoparticles to proteins inside live cells, Angewandte Chemie, 2011, 123(40), 9524-7;
  • Esseling-Ozdoba, A., Kik, R.A., van Lammeren, A.A.M., Kleijn, J.M., and Emons, A.M.C., Flexibility contra stiffness: the phragmoplast as a physical barrier for beads but not for vesicles, Plant Physiology, 2010, 152, 1065-72;
  • Inoue, K.-i., Takano, H., Yanagisawa, R., Koike, E., and Shimada, A., Size effects of latex nanomaterials on lung inflammation in mice, Toxicology and applied pharmacology, 2009, 234(1), 68-76;
  • Pulido-Companys, A., Claret, J., Ignés-Mullol, J., and Sagués, F., Measurement of a Structured Backflow in an Open Small Channel Induced by Surface-Tension Gradients, Physical review letters, 2013, 110(21), 214506;
  • Witecy, S., Herstellung und Charakterisierung von Einzeldomänenantikörpern und Nanopartikelkonjugaten für die Visualisierung von Tumorzellen, PhD thesis, 2012;
  • Battersby, B.J., Bryant, D., Meutermans, W., Matthews, D., Smythe, M.L., and Trau, M., Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry, Journal of the American Chemical Society, 2000, 122(9), 2138-9;
  • Boulogne, F., Giorgiutti-Dauphiné, F., and Pauchard, L., The buckling and invagination process during consolidation of colloidal droplets, Soft Matter, 2013, 9(3), 750-7;
  • Einert, T., Lipowsky, P., Schilling, J., Bowick, M.J., and Bausch, A.R., Grain Boundary Scars on Spherical Crystals, Langmuir, 2005, 21, 12076- 9;
  • Freese, C., Schreiner, D., Anspach, L., Bantz, C., Maskos, M., Unger, R.E., and Kirkpatrick, C.J., In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch, Particle and fibre toxicology, 2014, 11(1), 68;
  • Fujioka, K., Hanada, S., Inoue, Y., Sato, K., Hirakuri, K., Shiraishi, K., Kanaya, F., Ikeda, K., Usui, R., and Yamamoto, K., Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers, International journal of molecular sciences, 2014, 15(7), 11742-59;
  • Kasper, J., Hermanns, M.I., Bantz, C., Maskos, M., Stauber, R., Pohl, C., Unger, R.E., and Kirkpatrick, J.C., Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures, Part Fibre Toxicol, 2011, 8(1), 6;
  • Kasper, J., Hermanns, M.l., Bantz, C., Koshkina, O., Lang, T., Maskos, M., Pohl, C., Unger, R.E., and Kirkpatrick, J.C., Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins, Arch Toxicol, 2013, 87(6), 1053-65;
  • Kasper, J., Hermanns, M.l., Bantz, C., Utech, S., Koshkina, O., Maskos, M., Brochhausen, C., Pohl, C., Fuchs, S., Unger, R.E., and Kirkpatrick, J.C., Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro, Eur J Pharm Biopharm, 2013, 84, 275-87;
  • Kasper, J.Y., Feiden, L., Hermanns, M.I., Bantz, C., Maskos, M., Unger, R.E., and Kirkpatrick, C.J., Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model, Beilstein Journal of Nanotechnology, 2015, 6, 517-28, doi: 10.3762/bjnano.6.54;
  • Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., and Akase, T., Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2010, 65(3), 199-201;
  • Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., and Akase, T., Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure, Nanotechnology, 2012, 23(4), 045101;
  • Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Nagano, K., and Abe, Y., Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes, Particle and fibre toxicology, 2011, 8(1), 1;
  • Schiperski, F., Zirlewagen, J., and Scheytt, T., Transport and attenuation of particles of different density and surface charge: A karst aquifer field study, Environmental science & technology, 2016, 50(15), 8028-35;
  • Hiemer, B., Krogull, M., Zander, K., Grüttner, C., Bergschmidt, P., Tischer, T., Wree, A., Bader, R., and Pasold, J., Chondrogenic Differentiation of Human Chondrocytes and Stem Cells in Different Cell Culture Systems Using IGF-1-Coupled Particles, Journal of Tissue Science & Engineering, 2017, 8(2);
  • Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S.O., Donnert, G., and Hell, S.W., Dual-color STED microscopy at 30-nm focal-plane resolution, Small, 2008, 4(8), 1095-100;
  • Nabeshi, H., Yoshikawa, T., Arimori, A., Yoshida, T., Tochigi, S., Hirai, T., Akase, T., Nagano, K., Abe, Y., and Kamada, H., Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages, Nanoscale Res Lett, 2011, 6(1), 93;
  • Pasold, J., Bader, R., Zander, K., Heskamp, B., Grüttner, C., Lüthen, F., Tischer, T., and Jonitz-Heincke, A., Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds, Int J of Nanomedicine, 2015, 10, 1131-43, doi: 10.2147/ijn.s72872;
  • Punge, A., Rizzoli, S.O., Jahn, R., Wildanger, J.D., Meyer, L., Schönle, A., Kastrup, L., and Hell, S.W., 3D reconstruction of high‐resolution STED microscope images, Microscopy research and technique, 2008, 71(9), 644-50;
  • Watanabe, S., Punge, A., Hollopeter, G., Willig, K.I., Hobson, R.J., Davis, M.W., Hell, S.W., and Jorgensen, E.M., Protein localization in electron micrographs using fluorescence nanoscopy, Nature methods, 2011, 8(1), 80-4;
  • Howorka, S., and Pammer, P., Molecule arrays and method for producing the same, WO/2005/025737, 2005;
  • Luderer, F., Löbler, M., Rohm, H.W., Gocke, C., Kunna, K., Köck, K., Kroemer, H.K., Weitschies, W., Schmitz, K.-P., and Sternberg, K., Biodegradable Sirolimus- loaded Poly(lactide) Nanoparticles as Drug Delivery System for the Prevention of In-Stent Restenosis in Coronary Stent Application, J Biomater Appl, 2011, 25, 851-75;
  • Mima, Y., Fukumoto, S., Koyama, H., Okada, M., Tanaka, S., Shoji, T., Emoto, M., Furuzono, T., Nishizawa, Y., and Inaba, M., Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres, PLoS One, 2012, 7(4), e35199;
  • Hammer, A., Gruttner, C., and Schumann, R., New biocompatible tracer particles: use for estimation of microzooplankton grazing, digestion, and growth rates, Aquatic Microbial Ecology, 2001, 24(2), 153-61;
  • Hammer, A., Grüttner, C., and Schumann, R., The effect of electrostatic charge of food particles on capture efficiency by oxyrrhis marina Dujardin (dinoflagellate), Protist, 1999, 150, 375-82;
  • Von Elert, E., and Wolffrom, T., Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia, Limnology and Oceanography, 2001, 46(6), 1552-8;