Magnetische Partikel

Das Angebot von micromod umfasst eine Vielzahl von magnetischer Nano- und Mikropartikel für verschiedene Anwendungen im Life-Science-Bereich. In unserer Broschüre über Magnetpartikel werden ausgewählte Anwendungen als Tracer in der Kernspintomographie, im Magnetic Particle Imaging, in der Hyperthermie, für das Homing und Tracking von Stammzellen sowie das Targeting und die selektive Separation von Biomolekülen oder Metallionen zusammengefasst.

Magnetpartikel im Größenbereich von 100 nm bis 10 µm sind für die Separation am Permanentmagneten geeignet und werden mit verschiedenen Matrixmaterialien angeboten:

Dextran (nanomag®-D)
Vernetztes Dextran (nanomag®-CLD)
Bionisiertes NanoFerrit (BNF-Partikel)
Polystyrol / Polymethacrylat (micromer®-M)
Silikat (sicastar®-M, sicastar®-M-CT)
Silikat-verstärktes Dextran (nanomag®-silica)
Eisenoxid (Eisenoxid-Partikel)

Kleinere Magnetpartikel mit Durchmessern von 30 nm bis 130 nm erfordern eine Separation im Hochgradientenmagnetfeld oder mittels Größenausschlusschromatographie. Sie sind mit unterschiedlichen biokompatiblen Polysaccharidbeschichtungen erhältlich:

Dextran (perimag®, synomag®-D)
Vernetztes Dextran (nanomag®-CLD)
Bionisiertes NanoFerrit (BNF-Starch, BNF-Dextran)
Eisenoxid (Eisenoxid-Partikel, synomag®)

Bitte wählen Sie einen Produkttyp aus, um Ihre spezielle Auswahl der Oberflächenfunktionalisierung und der Partikelgröße zu treffen.

Zeigt alle 172 Ergebnisse

Referenzen
  • Hashiguchi, S., Methods for recovering microorganisms and nucleic acid using fine particle and kit to be used for the methods, EP 1882738A1, 2008;
  • Helou, M., Reisbeck, M., Tedde, S.F., Richter, L., Bär, L., Bosch, J.J., Stauber, R.H., Quandtd, E., and Hayden, O., Time-of-flight magnetic flow cytometry in whole blood with integrated sample preparation, Lab Chip, 2013, 13(6), 1035-8;
  • Kuramitz, H., Magnetic microbead-based electrochemical immunoassays, Anal Bioanal Chem, 2009, 394, 61-9;
  • Wirix-Speetjens, R., Fyen, W., De Boeck, J., and Borghs, G., Single magnetic particle detection: Experimental verification of simulated behavior, Journal of applied physics, 2006, 99(10), 103903;
  • Wirix-Speetjens, R., Fyen, W., De Boeck, J., and Borghs, G., Enhanced magnetic particle transport by integration of a magnetic flux guide: Experimental verification of simulated behavior, Journal of applied physics, 2006, 99(8), 08P101;
  • Wirix-Speetjens, R., Fyen, W., Xu, K., Boeck, J.D., and Borghs, G., A force study of on-chip magnetic particle transport based o tapered conductors, IEEE Transactions on Magnetics, 2005, 41(10), 4128-33;
  • Kirch, J., Schneider, A., Abou, B., Hopf, A., Schaefer, U.F., Schneider, M., Schall, C., Wagner, C., and Lehr, C.-M., Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus, Proceedings of the National Academy of Sciences, 2012, 109(45), 18355-60;
  • Banerjee, S., Seul, M., and Li, A.X., Arrays of magnetic particles, US 0272049, 2005;
  • Chandramohanadas, R., Park, Y., Lui, L., Li, A., Quinn, D., Liew, K., Diez-Silva, M., Sung, Y., Dao, M., and Lim, C.T., Biophysics of malarial parasite exit from infected erythrocytes, PloS one, 2011, 6(6), e20869;
  • Ferreira, H., Graham, D., Freitas, P., and Cabral, J., Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors, Journal of Applied Physics, 2003, 93(10), 7281-6;
  • Graham, D., Ferreira, H., Bernardo, J., Freitas, P., and Cabral, J., Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications, Journal of Applied Physics, 2002, 91(10), 7786-8;
  • Graham, D.L., Ferreira, H.A., and Freitas, P.P., Magnetoresistive-based biosensors and biochips, Trends in Biotechnology, 2004, 22(9), 455-62;
  • Graham, D.L., Ferreira, H.A., Freitas, P.P., and Cabral, J.M.S., High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors, Biosensors and Bioelectronics, 2003, 18(4), 483-8;
  • Lagae, L., Wirix-Speetjens, R., Das, J., Graham, D., Ferreira, H., Freitas, P., Borghs, G., and De Boeck, J., On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors, Journal of Applied Physics, 2002, 91(10), 7445-7;
  • Lagae, L., Wirix-Speetjens, R., Liu, C.-X., Laureyn, W., Borghs, G., Harvey, S., Galvin, P., Ferreira, H., Graham, D., and Freitas, P., Magnetic biosensors for genetic screening of cystic fibrosis, IEE Proceedings-Circuits, Devices and Systems, 2005, 152(4), 393-400;
  • Liu, C., Lagae, L., Wirix-Speetjens, R., and Borghs, G., On-chip separation of magnetic particles with different magnetophoretic mobilities, Journal of applied physics, 2007, 101(2), 024913;
  • Liu, C., Stakenborg, T., Peeters, S., and Lagae, L., Cell manipulation with magnetic particles toward microfluidic cytometry, Journal of Applied Physics, 2009, 105(10), 102014;
  • Liu, Y., Jin, W., Yang, Y., and Wang, Z., Micromagnetic simulation for detection of a single magnetic microbead or nanobead by spin-valve sensors, Journal of applied physics, 2006, 99(8), 08G102;
  • Llandro, J., Palfreyman, J.J., Ionescu, A., and Barnes, C.H.W., Magnetic biosensor technologies for medical applications: a review, Med Biol Eng Comput, 2010, 48, 977-98 (81);
  • Murthy, S.S., Dulgartulloch, A.J., Bray, W.J., Chandrasekaran, S., and Tiwari, A.K., High throughput magnetic isolation technique and device for biological materials, US 0024331, 2011;
  • Skottrup, P.D., Fought Hansen, M., Moresco Lange, J., Deryabina, M., Svendsen, W.E., Havsteen Jakobsen, M., and Dufva, M., Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray, Acta Biomater, 2010, 6, 3936-46;
  • Svedlindh, P., Gunnarsson, K., Strömberg, M., and Oscarsson, S., Bionanomagnetism, Nanomagnetism And Spintronics: Fabrication, Materials, Characterization And Applications, 2010;
  • Wirix-Speetjens, R., Magnetoresistive biosensors based on manipulation and detection of magnetic particles, University Leuven, 2006;
  • Bejhed, R.S., Bo, T., Eriksson, K., Brucas, R., Oscarsson, S., Strömberg, M., Svedlindh, P., and Gunnarsson, K., Magnetophoretic Transport Line System for Rapid On-Chip Attomol Protein Detection, Langmuir, 2015, 31(37), 10296-302;
  • Tian, B., Bejhed, R.S., Svedlindh, P., and Strömberg, M., Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection, Biosensors and Bioelectronics, 2016, 77, 32-9;
  • Dutz, S., Hayden, M., Schaap, A., Stoeber, B., and Häfeli, U.O., A microfluidic spiral for size-dependent fractionation of magnetic microspheres, Journal of Magnetism and Magnetic Materials, 2012, 324(22), 3791-8;
  • Ehresmann, A., Method and Apparatus for transporting magnetic fluids and particles, 2011, WO 054391 A1;
  • Moser, C., Mayr, T., and Klimant, I., Filter cubes with built- in ultrabright light- emitting diodes as exchangeable excitation light sources in fluorescence microscopy, Journal of Microscopy, 2006, 222, 135- 40;
  • Penchovsky, R., and McCaskill, J.S., Cascadable hybridisation transfer of specific DNA between microreactor selection modules, DNA 7, LNCS 2340, 2002, N. Jonoska and N.C. Seeman (Eds.), 46-56;
  • Recker, T., Haamann, D., Schmitt, A., Küster, A., Klee, D., Barth, S., and Müller-Newen, G., Directed covalent immobilization of fluorescently labeled cytokines, Bioconjugate chemistry, 2011, 22(6), 1210-20;
  • Eriksson, K., Palmgren, P., Nyholm, L., and Oscarsson, S., Electrochemical synthesis of gold and protein gradients on particle surfaces, Langmuir, 2012, 28, 10318-23;
  • Johansson, L.E., Gunnarsson, K., Bijelovic, S., Eriksson, K., Surpi, A., Göthelid, E., Svedlindh, P., and Oscarsson, S., A magnetic microchip for controlled transport of attomole levels of proteins, Lab Chip, 2010, 10, 654-61;
  • Oscarsson, S., Nyholm, L., Svedlindh, P., and Gunnarsson, K., Partial derivatization of particles, US 0003401, 2011;
  • Penchovsky, R., Birch-Hirschfeld, E., and McCaskill, J.S., End-specific covalent photo-dependent immobilisation of synthetic DNA to paramagnetic beads, Nucleic acids research, 2000, 28(22), e98-e;
  • Chung, J., Kim, Y.-J., and Yoon, E., Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures, Appl Physics Lett, 2011, 98, 123701;
  • Hoyos, M., Moore, L., Williams, P.S., and Zborowski, M., The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species, Journal of magnetism and magnetic materials, 2011, 323(10), 1384-8, doi: 10.1016/j.jmmm.2010.11.051;
  • Loureiro, J., Fermon, C., Pannetier-Lecoeur, M., Arrias, G., Ferreira, R., Cardoso, S., and Freitas, P., Magnetoresistive detection of magnetic beads flowing at high speed in microfluidic channels, IEEE Transactions on Magnetics, 2009, 45(10), 4873-6;
  • Grüttner, C., Müller, K., and Teller, J., A rapid assay to measure the shielding of iron oxide cores by the particle shell, IEEE Trans Magn, 2013, 49(1), 177-81;
  • Diller, S., Grassl, r., Miller, S., Robl, I., Schultz, M., and Zander, T., Method for unspecific enrichment of bacterial cells, US 0019827, 2005;
  • Weber, E., Günther, D., Zellmer, S., Goldberg, M., Bergmann, C., Herrmann, C., Huske, A., and Müller, A., Immunomagnetic separation of specific target cells, 2005, US Patent 20050003559, 1-9;
  • Mandil, A., Idrissi, L., and Amine, A., Stripping voltammetric determination of mercury (II) and lead (II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles, Microchimica Acta, 2010, 170(3-4), 299-305;
  • Hughes, S., McBain, S.C., Dobson, J., and El Haj, A.J., Selective activation of mechanosensitive ion channels using magnetic particles, J R Soc Interface, 2008, 5, 855-63;
  • Astalan, A.P., Ahrentorp, F., Johansson, C., Larsson, K., and Krozer, A., Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles, Biosensors and Bioelectronics, 2004, 19(8), 945-51;
  • Benkoski, J.J., Breidenich, J.L., Uy, O.M., Hayes, A.T., Deacon, R.M., Land, H.B., Spicer, J.M., Keng, P.Y., and Pyun, J., Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies, J Mater Chem, 2011, 21(20), 7314-25;
  • Buchegger, P., Sauer, U., Toth-Szekely, H., and Preininger, C., Miniaturized protein microarray with internal calibration as point-of-care device for diagnosis of neonatal sepsis, Sensors, 2012, 12, 1494-508;
  • Dalslet, B.T., Damsgaard, C., Donolato, M., Stromme, M., Strömberg, M., Svedlindh, P., and Hansen, M.F., Bead magnetorelaxometry with an on-chip magnetoresistive sensor, Lab Chip, 2011, 11, 296-302;
  • Donolato, M., Lofink, F., Hankemeier, S., Porro, J., Oepen, H., and Vavassori, P., Characterization of domain wall–based traps for magnetic beads separation, Journal of Applied Physics, 2012, 111(7), 07B336;
  • Eveness, J., Kiely, J., Hawkins, P., Wraith, P., and Luxton, R., Evaluation of paramagnetic particles for use in a resonant coil magnetometer based magneto-immunoassay, Sensors and Actuators B: Chemical, 2009, 139(2), 538-42;
  • Glatz, A., Bastin, M.E., Kiker, A.J., Deary, I.J., Wardlaw, J.M., and Hernández, M.C.V., Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities, NeuroImage, 2015, 105, 332-46;
  • Hedayati, M., Abubaker-Sharif, B., Khattab, M., Razavi, A., Mohammed, I., Nejad, A., Wabler, M., Zhou, H., Mihalic, J., Gruettner, C., DeWeese, T., and Ivkov, R., An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles, International Journal of Hyperthermia, 2017, 1-9, doi: 10.1080/02656736.2017.1354403;
  • Lipp, P., Müller, U., Hetzer, B., and Wagner, T., Characterization of nanoparticulate fouling and breakthrough during low-pressure membrane filtration, Desalination and Water Treatment, 2009, 9(1-3), 234-40;
  • Metaxas, P.J., Sushruth, M., Begley, R.A., Ding, J., Woodward, R.C., Maksymov, I.S., Albert, M., Wang, W., Fangohr, H., and Adeyeye, A.O., Sensing magnetic nanoparticles using nano-confined ferromagnetic resonances in a magnonic crystal, Applied Physics Letters, 2015, 106(23), 232406;
  • Mizuki, T., Sawai, M., Nagaoka, Y., Morimoto, H., and Maekawa, T., Activity of lipase and chitinase immobilized on superparamagnetic particles in a rotational magnetic field, Plos ONE, 2013, 8(6), e66528;
  • Mizuki, T., Watanabe, N., Nagaoka, Y., Fukushima, T., Morimoto, H., Usami, R., and Maekawa, T., Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field, Biochem Biophys Res Comm, 2010, 779-82;
  • Osterberg, F.W., Dalslet, B.T., Snakenborg, D., Johansson, C., and Hansen, M.F., Chip-based measurements of brownian relaxation of magnetic beads using a planar hall effect magnetic field sensor, AIP Conf Proc, 2012, 1311, 176-83;
  • Saari, M., Sakai, K., Kiwa, T., Sasayama, T., Yoshida, T., and Tsukada, K., Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high-T c superconducting quantum interference device magnetometer, Journal of Applied Physics, 2015, 117(17), 17B321;
  • Selt, M., Tennstaedt, A., Beyrau, A., Nelles, M., Schneider, G., Löwik, C., and Hoehn, M., In Vivo Non-Invasive Tracking of Macrophage Recruitment to Experimental Stroke, PloS one, 2016, 11(6), e0156626;
  • Seo, Y., Ikemoto, E., Yoshida, A., and Kogure, K., Particle capture by marine bacteria, Aquatic microbial ecology, 2007, 49(3), 243-53;
  • Ström, V., Hultenby, K., Grüttner, C., Teller, J., Xu, B., and Holgersson, J., A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer, Nanotechnology, 2004, 15(5), 457;
  • Sushruth, M., Ding, J., Duczynski, J., Woodward, R.C., Begley, R., Fangohr, H., Fuller, R.O., Adeyeye, A.O., Kostylev, M., and Metaxas, P.J., Resonance-based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets, arXiv preprint arXiv:160405835, 2016;
  • Tseng, P., Judy, J.W., and Di Carlo, D., Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior, Nature Methods, 2012, 9(11), 1113-9;
  • Wilson, R.J., Hu, W., Wong Po Fu, C., Koh, A.L., Gaster, R.S., Earhart, C.M., and al., e., Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells, Journal of Magnetism and Magnetic Materials, 2009, 321(10), 1452-8;
  • Basak, S., Brogan, D., Dietrich, H., Ritter, R., Dacey, R.G., and Biswas, P., Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain, Int J Nanomed, 2009, 4, 9;
  • Jia, J.-M., Chowdary, P.D., Gao, X., Ci, B., Li, W., Mulgaonkar, A., Plautz, E.J., Hassan, G., Kumar, A., and Stowe, A.M., Control of cerebral ischemia with magnetic nanoparticles, Nature methods, 2017, 14(2), 160-6;
  • Dalslet, B.T., Donolato, M., and Hansen, M.F., Planar Hall effect sensor with magnetostatic compensation layer, Sensors and Actuators A: Physical, 2012, 174, 1-8;
  • Donolato, M., Sogne, E., Dalslet, B.T., Cantoni, M., Petti, D., Cao, J., Cardoso, F., Cardoso, S., Freitas, P., and Hansen, M.F., On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions, Applied Physics Letters, 2011, 98(7), 073702;
  • Gregory, C., and Pound, J., Cell separation technique, US 2011/0256581 A1, 2011;
  • Marcos-Campos, I., Asin, L., Torres, T., Marquina, C., Tres, A., Ibarra, M., and Goya, G.F., Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells, Nanotechnology, 2011, 22(20), 205101;
  • Mondalek, F.G., Zhang, Y.Y., Kropp, B., Kopke, R.D., Ge, X., Jackson, R.L., and Dormer, K.J., The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field, J Nanobiotechnology, 2006, 4(4);
  • Mu, Q., Li, Z., Li, X., Mishra, S.R., Zhang, B., Si, Z., Yang, L., Jiang, W., and Yan, B., Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells, The Journal of Physical Chemistry C, 2009, 113(14), 5390-5;
  • Robatjazi, S.-M., Shojaosadati, S.-A., Khalilzadeh, R., and Farahani, E., Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatalysis and Biotransformation, 2010, 304-12;
  • Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Strømme, M., Sensitive molecular diagnostics using volume-amplified magnetic nanobeads, Nano letters, 2008, 8(3), 816-21;
  • Strömberg, M., Gunnarsson, K., Johansson, H., Nilsson, M., Svedlindh, P., and Strømme, M., Interbead interactions within oligonucleotide functionalized ferrofluids suitable for magnetic biosensor applications, Journal of Physics D: Applied Physics, 2007, 40(5), 1320;
  • Strömberg, M., Gunnarsson, K., Valizadeh, S., Svedlindh, P., and Strömme, M., Aging phenomena in ferrofluids suitable for magnetic biosensor applications, Journal of applied physics, 2007, 101(2), 023911;
  • Strömberg, M., Zardan Gomez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Stromme, M., and Svedlindh, P., Microscopic mechanisms influencing the volume amplified magnetic nanobead detection assay, Biosensors and Bioelectronics, 2008, 24, 696-703;
  • Strömberg, M., Zardan Gomez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Stromme, M., Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay, ANALYTICAL CHEMISTRY, 2009, 81, 3398-406;
  • Zardan Gomez de la Torre, T., Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., and Stromme, M., Molecular diagnostics using magnetic nanobeads, J Physics: Conference Series 200, 2010, 81, 3398- 406;
  • Zardan Gomez de la Torre, T., Strömberg, M., Russell, C., Göransson, J., Nilsson, M., Svedlindh, P., and Stromme, M., Investigation of immobilization of functionalized magnetic nanobeads in rolling circle amplified DNA coils, J Phys Chem B, 2010, 114, 3707-13;
  • Asin, L., Ibarra, M.R., Tres, A., and Goya, G.F., Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration, Pharm Res, 2012, 29, 1319-27;
  • Dixon, J.E., Osman, G., Morris, G.E., Markides, H., Rotherham, M., Bayoussef, Z., El Haj, A.J., Denning, C., and Shakesheff, K.M., Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides, Proceedings of the National Academy of Sciences, 2016, 113(3), E291-E9;
  • Gilmer, L., Mandal, A., Wolkowitz, M.J., Klotz, K.L., and Herr, J.C., Compositions and methods for identifying sperm for forensic applications, US 0318250, 2008;
  • Ma, Y.-H., Chen, S.-Y., Tu, S.-J., Yang, H.-W., and Liu, H.-L., Manipulation of magnetic nanoparticle retention and hemodynamic consequences in microcirculation: assessment by laser speckle imaging, Int J of Nanomedicine, 2012, 7, 2817;
  • Milano, G., Musumeci, D., Gaglione, M., and Messere, A., An alternative strategy to synthesize PNA and DNA magnetic conjugates forming nanoparticle assembly based on PNA/DNA duplexes, Molecular BioSystems, 2010, 6(3), 553-61;
  • Nair, B.G., Nagaoka, Y., Morimoto, H., Yoshida, Y., Maekawa, T., and Kumar, D.S., Aptamer conjugated magnetic nanoparticles as nanosurgeons, Nanotechnology, 2010, 21(45), 455102;
  • Takamura, T., Ko, P.J., Sharma, J., Yukino, R., Ishizawa, S., and Sandhu, A., Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications, Sensors, 2015, 15(6), 12983-98;
  • Mair, L., Ford, K., Alam Md., R., Kole, R., Fisher, M., and Superfine, R., Size-Uniform 200 nm particles: fabrication and application to magnetofection, J Biomed Nanotechnol, 2009, 5(2), 182;
  • Zamora, D.O., DeSilva, M.N., Cornell, L.E., Glickman, R.D., Wang, H.-C.H., and Johnson, A.J., Characterization of Magnetic Nanoparticle Loaded Corneal Endothelial Cells, Investigative Ophtalmology and Visual Science, 2014, 55(5), 1442;
  • Bejhed, R.S., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., Strömberg, M., Bejhed, R.S., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Turn-on optomagnetic bacterial DNA sequence detection using volume-amplified magnetic nanobeads, Biosensors and Bioelectronics, 2015, 66, 405-11, doi: 10.1016/j.bios.2014.11.048;
  • Laitinen, M.P.A., Salmela, J., Gilbert, L., Kaivola, R., Tikkala, T., Oker-Blom, C., Pekola, J., and Vuento, M., Method and apparatus using selected superparamagnetic labels for rapid quantification of immunochromatographic tests, Nanotechnology, Science and Applications, 2009, 2, 13-20;
  • Strömberg, M., Zardán Gómez de la Torre, T., Nilsson, M., Svedlindh, P., and Strømme, M., A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer, Biotechnology J, 2014, 9(1), 137-45, doi: 10.1002/biot.201300348;
  • Cardoso, F.A., Martins, V.C., Fonseca, L.P., Germano, J., Sousa, L.A., Piedade, M.S., and Freitas, P.P., Spintronic microfluidic platform for biomedical and environmental applications, 2010, 7653, 765306--3;
  • Chatterjee, E., Marr, T., Dhagat, P., and Remcho, V., A microfluidic sensor based on ferromagnetic resonance induced in magnetic bead labels, Sensors and Actuators B, 2011, doi:10.1016/j.snb.2011.02.012;
  • Donolato, M., Antunes, P., Bejhed, R.S., Zardán Gómez de la Torre, T., Østerberg, F.W., Strömberg, M., Nilsson, M., Strømme, M., Svedlindh, P., and Hansen, M.F., Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics, Analytical chemistry, 2015, 87(3), 1622-9;
  • Germano, J., Martins, V.C., Cardoso, F.A., Almeida, T.M., Sousa, L., Freitas, P.P., and Piedade, M.S., A portable and autonomous magnetic detection platform for biosensing, Sensors, 2009, 9, 4119-37;
  • Konno, H., Isu, A., Kim, Y., Murakami-Fuse, T., Sugano, Y., and Hisabori, T., Characterization of the relationship between ADP- and e- induced inhibition i cyanobacterial F1 -ATpase, J Biol Chem, 2011, 286(15), 13423-9;
  • Tian, B., Wetterskog, E., Qiu, Z., de la Torre, T.Z.G., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation, Biosensors and Bioelectronics, 2017, 98, 285-91;
  • Fernandes, E., Martins, V., Nóbrega, C., Carvalho, C., Cardoso, F., Cardoso, S., Dias, J., Deng, D., Kluskens, L., and Freitas, P., A bacteriophage detection tool for viability assessment of Salmonella cells, Biosensors and Bioelectronics, 2014, 52, 239-46;
  • Grüttner, C., Teller, J., Schütt, W., Westphal, F., Schümichen, C., and Paulke, B.R., Preparation and Characterization of Magnetic Nanospheres for In Vivo Application, Scientific and Clinical Applications of Magnetic Carriers, Ed U Häfeli, W Schütt, J Teller, M Zborowski, 1997, 53-68;
  • Hallahan, D.E., Geng, L., and Giorgio, T.D., Targeted drug delivery methods, 2003;
  • Krukemeyer, M.G., Krenn, V., Jakobs, M., and Wagner, W., Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver-magnetic nanoparticles in cancer treatment, J Surg Res, 2011, 175, 35-43;
  • Krukemeyer, M.G., Krenn, V., Jakobs, M., and Wagner, W., Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets - sarcoma treatment in progress, Journal of drug Targeting, 2012, 185-93;
  • Kanazaki, K., Honma, T., Yamauchi, F., Ogawa, S., and Inoue, S., Composite particle, contrast agent for photoacoustic imaging and method for producting the composite particle, US 0294987, 2011;
  • Bu, M., Christensen, T.B., Smistrup, K., Wolff, A., and Hansen, M.F., Characterization of a microfluidic magnetic bead separator for high-throughput applications, Sensors and Actuators A: Physical, 2008, 145, 430-6;
  • Grüttner, C., and Teller, J., New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications, Journal of Magnetism and Magnetic Materials, 1999, 194(1), 8-15;
  • Kuhn, S.J., Development and characterization of functionalized superparamagnetic nanoparticles for interstitial applications, PhD thesis, 2005;
  • Kuhn, S.J., Finch, S.K., Hallahan, D.E., and Giorgio, T.D., Proteolytic surface functionalization enhances in vitro magnetic nanoparticle mobility through extracellular matrix, Nano letters, 2006, 6(2), 306-12;
  • Kuhn, S.J., Finch, S.K., Hallahan, D.E., and Giorgio, T.D., Facile production of multivalent enzyme-nanoparticle conjugates, Journal of Magnetism and Magnetic Materials, 2007, 311(1), 68-72;
  • Kuhn, S.J., Hallahan, D.E., and Giorgio, T.D., Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system, Ann Biomed Eng, 2006, 34(1), 51-8;
  • Lawton, R., Soluble analyte detection and amplifiction, US 0048500, 2003;
  • Ahrentorp, F., Astalan, A., Blomgren, J., Jonasson, C., Wetterskog, E., Svedlindh, P., Lak, A., Ludwig, F., van IJzendoorn, L.J., and Westphal, F., Effective particle magnetic moment of multi-core particles, Journal of Magnetism and Magnetic Materials, 2015, 380, 221-6;
  • Al Faraj, A., Shaik, A., Shaik, A., and Al Sayed, B., Enhanced magnetic delivery of superparamagnetic iron oxide nanoparticles to the lung monitored using noninvasive MR, Journal of Nanoparticle Research, 2014, 16(10), 1-11, doi: 10.1007/s11051-014-2667-9;
  • Attaluri, A., Kandala, S.K., Wabler, M., Zhou, H., Cornejo, C., Armour, M., Hedayati, M., Zhang, Y., DeWeese, T.L., Herman, C., and Ivkov, R., Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer, International Journal of Hyperthermia, 0(0), 1-16, doi: doi:10.3109/02656736.2015.1005178;
  • Attaluri, A., Seshadri, M., Mirpour, S., Wabler, M., Marinho, T., Furqan, M., Zhou, H., De Paoli, S., Gruettner, C., Gilson, W., DeWeese, T., Garcia, M., Ivkov, R., and Liapi, E., Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study, International Journal of Hyperthermia, 2016, 1-15, doi: 10.3109/02656736.2016.1159737;
  • Bordelon, D.E., Cornejo, C., Grüttner, C., Westphal, F., DeWeese, T.L., and Ivkov, R., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, Journal of Applied Physics, 2011, 109(12), 124904;
  • Branquinho, L., C., Carrião, M., S., Costa, A., S. , Zufelato, N., Sousa, M., H. , Miotto, R., Ivkov, R., and Bakuzis, A., F. , Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, Scientific Reports, 2013, 3, 2887, doi: 10.1038/srep02887;
  • Cuny, L., Herrling, M.P., Guthausen, G., Horn, H., and Delay, M., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, Journal of contaminant hydrology, 2015, 182, 51-62;
  • Dennis, C., Jackson, A., Borchers, J., Hoopes, P., Strawbridge, R., Foreman, A., Van Lierop, J., Grüttner, C., and Ivkov, R., Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology, 2009, 20(39), 395103;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Hoopes, P., Strawbridge, R., Pierce, Z., Goerntiz, E., and Lau, J., The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia, Journal of Physics D: Applied Physics, 2008, 41(13), 134020;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Lau, J., Goernitz, E., and Gruettner, C., The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles, Journal of Applied Physics, 2008, 103(7), 07A319;
  • Dennis, C.L., Krycka, K.L., Borchers, J.A., Desautels, R.D., van Lierop, J., Huls, N.F., Jackson, A.J., Gruettner, C., and Ivkov, R., Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field, Advanced Functional Materials, 2015, 25(27), 4300-11;
  • Fock, J., Jonasson, C., Johansson, C., and Hansen, M.F., Characterization of fine particles using optomagnetic measurements, Physical Chemistry Chemical Physics, 2017, 19(13), 8802-14;
  • Giustini, A., Ivkov, R., and Hoopes, P., Magnetic nanoparticle biodistribution following intratumoral administration, Nanotechnology, 2011, 22(34), 345101;
  • Giustini, A.J., Perreard, I., Rauwerdink, A.M., Hoopes, P.J., and Weaver, J.B., Noninvasive assessment of magnetic nanoparticle–cancer cell interactions, Integrative Biology, 2012, 4(10), 1283-8;
  • Giustini, A.J., Petryk, A.A., and Hoopes, P.J., Ionization radiation increases systemic nanoparticle tumor accumulation, Nanomedicine, 2012, 8(6), 818-21;
  • Grüttner, C., Müller, K., Teller, J., and Westphal, F., Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications, International Journal of Hyperthermia, 2013, 29(8), 777-89;
  • Gutierrez, L., Costo, R., Gruettner, C., Westphal, F., Gehrke, N., Heinke, D., Fornara, A., Pankhurst, Q.A., Johansson, C., and Veintemillas-Verdaguer, S., Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications, Dalton transactions, 2015, 44, 2943-52;
  • Hedayati, M., Thomas, O., Abubaker-Sharif, B., Zhou, H., Cornejo, C., Zhang, Y., Wabler, M., Mihalic, J., Grüttner, C., Westphal, F., Geyt, A., DeWeese, T.L., and Ivkov, R., The effect of cell-cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors, Nanomedicine, 2012, 8(1), 29-41;
  • Hoopes, P.J., Petryk, A.A., Gimi, B., Giustini, A.J., Weaver, J.B., Bischof, J., Chamberlain, R., and Garwood, M., In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution, Proceedings of SPIE, 2012, 8317;
  • Kasten, A., Grüttner, C., Kühn, J.-P., Bader, R., Pasold, J., and Frerich, B., Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells, PloS one, 2014, 9(9), e108055;
  • Kasten, A., Siegmund, B.J., Grüttner, C., Kühn, J.-P., and Frerich, B., Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types, Journal of Magnetism and Magnetic Materials, 2015, 380, 34-8, doi: 10.1016/j.jmmm.2014.08.044;
  • Krycka, K., Jackson, A., Borchers, J., Shih, J., Briber, R., Ivkov, R., Grüttner, C., and Dennis, C., Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis, Journal of Applied Physics, 2011, 109(7), 07B513;
  • Ludwig, F., Kazakova, O., Barquin, L.F., Fornara, A., Trahms, L., Steinhoff, U., Svedlindh, P., Wetterskog, E., Pankhurst, Q.A., and Southern, P., Magnetic, Structural, and Particle Size Analysis of Single-and Multi-Core Magnetic Nanoparticles, Magnetics, IEEE Transactions on, 2014, 50(11), 1-4;
  • Mukherjee, A., Castanares, M., Hedayati, M., Wabler, M., Trock, B., Kulkarni, P., Rodriguez, R., Getzenberg, R.H., DeWeese, T.L., and Ivkov, R., Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor, Nanomedicine, 2014, 9(18), 2729-43;
  • Østerberg, F.W., Rizzi, G., Henriksen, A.D., and Hansen, M.F., Planar Hall effect bridge geometries optimized for magnetic bead detection, Journal of Applied Physics, 2014, 115(18), 184505;
  • Ostrovska, L., Nanoparticle loaded stem cells and their use in MRI guided hyperthermia, US 2012/0283503 A1, 2012;
  • Pearce, J., Giustini, A., Stigliano, R., and Jack Hoopes, P., Magnetic Heating of Nanoparticles: The Importance of Particle Clustering to Achieve Therapeutic Temperatures, Journal of Nanotechnology in Engineering and Medicine, 2013, 4(1), 0110071-01100714, doi: 10.1115/1.4024904;
  • Perreard, I., Reeves, D., Zhang, X., Kuehlert, E., Forauer, E., and Weaver, J., Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times, Physics in medicine and biology, 2014, 59(5), 1109;
  • Petryk, A.A., Giustini, A.J., Gottesman, R.E., Trembly, B.S., and Hoopes, P.J., Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model, International Journal of Hyperthermia, 2013, 29(8), 819-27;
  • Ranzinger, F., Herrling, M.P., Lackner, S., Grande, V.W., Baniodeh, A., Powell, A.K., Horn, H., and Guthausen, G., Direct surface visualization of biofilms with high spin coordination clusters using Magnetic Resonance Imaging, Acta biomaterialia, 2016, 31, 167-77;
  • Reeves, D.B., and Weaver, J.B., Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field, Journal of physics D: Applied physics, 2014, 47(4), 045002;
  • Shubitidze, F., Kekalo, K., Stigliano, R., and Baker, I., Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy, Journal of Applied Physics, 2015, 117(9), 094302, doi: 10.1063/1.4907915;
  • Siegmund, B.J., Kasten, A., Kühn, J.-P., Winter, K., Grüttner, C., and Frerich, B., MRI-tracking of transplanted human ASC in a SCID mouse model, Journal of Magnetism and Magnetic Materials, 2017, 427, 151-5;
  • Soetaert, F., Kandala, S.K., Bakuzis, A., and Ivkov, R., Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles, Scientific Reports, 2017, 7(1), 6661, doi: 10.1038/s41598-017-07088-w;
  • Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R., and Artemov, D., Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content, International Journal of Hyperthermia, 2014, 30(3), 192-200;
  • Weaver, J.B., and Kuehlert, E., Measurement of magnetic nanoparticle relaxation time, Med Phys, 2012, 39(5), 2765-70;
  • Weaver, J.B., Zhang, X., Kuehlert, E., Toraya-Brown, S., Reeves, D.B., Perreard, I.M., and Fiering, S.N., Magnetic Nanoparticle Quantitation with Low Frequency Magnetic Fields: Compensating for Relaxation Effects, Nanotechnology, 2013, 24(32), 325502-, doi: 10.1088/0957-4484/24/32/325502;
  • Witte, K., Müller, K., Grüttner, C., Westphal, F., and Johansson, C., Particle size-and concentration-dependent separation of magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 2017, 427, 320-4;
  • Zadnik, P.L., Molina, C.A., Sarabia-Estrada, R., Groves, M.L., Wabler, M., Mihalic, J., McCarthy, E.F., Gokaslan, Z.L., Ivkov, R., and Sciubba, D., Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease: Laboratory investigation, Journal of Neurosurgery: Spine, 2014, 20(6), 740-50;
  • Artemov, D., Kato, Y., and SUDATH, H., Use of oscillating gradients of high magnetic field for specific destruction of cells labeled with magnetic nanoparticles, Patent WO2014107419A1, 2014;
  • Baiu, D.C., Artz, N.S., McElreath, M.R., Menapace, B.D., Hernando, D., Reeder, S.B., Grüttner, C., and Otto, M., High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles, Nanomedicine, 2015, 10(19), 2973-88, doi: 10.2217/nnm.15.138;
  • Behnam Azad, B., Banerjee, S.R., Pullambhatla, M., Lacerda, S., Foss, C.A., Wang, Y., Ivkov, R., and Pomper, M.G., Evaluation of a PSMA-targeted BNF nanoparticle construct, Nanoscale, 2015, 7(10), 4432-42, doi: 10.1039/C4NR06069E;
  • Grüttner, C., Müller, K., and Teller, J., Comparison of Strain-Promoted Alkyne-Azide Cycloaddition with Established Methods for Conjugation of Biomolecules to Magnetic Nanoparticles, Magnetics, IEEE Transactions on, 2013, 49(1), 172-6;
  • Østerberg, F.W., Rizzi, G., Zardán Gómez de la Torre, T., Strömberg, M., Strømme, M., Svedlindh, P., and Hansen, M., Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors, Biosensors and Bioelectronics, 2013, 40(1), 147-52;
  • Schrittwieser, S., Pelaz, B., Parak, W.J., Lentijo-Mozo, S., Soulantica, K., Dieckhoff, J., Ludwig, F., Guenther, A., Tschöpe, A., and Schotter, J., Homogeneous biosensing based on magnetic particle labels, Sensors, 2016, 16(6), 828;
  • Zhu, Y., Kekalo, K., NDong, C., Huang, Y.Y., Shubitidze, F., Griswold, K.E., Baker, I., and Zhang, J.X., Magnetic‐Nanoparticle‐Based Immunoassays‐on‐Chip: Materials Synthesis, Surface Functionalization, and Cancer Cell Screening, Advanced Functional Materials, 2016;
  • Fock, J., Parmvi, M., Strömberg, M., Svedlindh, P., Donolato, M., and Hansen, M.F., Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein, Biosensors and Bioelectronics, 2016;
  • Al Faraj, A., Shaik, A., Afzal, S., Al-Muhsen, S., and Halwani, R., Specific targeting and noninvasive magnetic resonance imaging of an asthma biomarker in the lung using polyethylene glycol functionalized magnetic nanocarriers, Contrast media & molecular imaging, 2015;
  • Grüttner, C., Müller, K., Teller, J., Westphal, F., Foreman, A.R., and Ivkov, R., Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy, J Magn Magn Mat, 2007, 311(1), 181-6;
  • Natarajan, A., Gruettner, C., Ivkov, R., DeNardo, G., Mirick, G., Yuan, A., Foreman, A., and DeNardo, S., NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics, Bioconjugate chemistry, 2008, 19(6), 1211-8;
  • Zhang, J., Dewilde, A.H., Chinn, P., Foreman, A.R., Barry, S., Kanne, D., and Braunhut, S.J., Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cancer cells in vitro via hyperthermia, Int J Hyperthermia, 2011, 27(7), 682-97;
  • Bejhed, R.S., Strømme, M., Svedlindh, P., Ahlford, A., and Strömberg, M., Magnetic nanobeads present during enzymatic amplification and labeling for a simplified DNA detection protocol based on AC susceptometry, AIP Advances, 2015, 5(12), 127139;
  • Donolato, M., Antunes, P., de la Torre, T.Z.G., Hwu, E.-T., Chen, C.-H., Burger, R., Rizzi, G., Bosco, F.G., Strømme, M., and Boisen, A., Quantification of rolling circle amplified DNA using magnetic nanobeads and a Blu-ray optical pick-up unit, Biosensors and Bioelectronics, 2015, 67, 649-55;
  • Engström, A., de la Torre, T.Z.G., Strømme, M., Nilsson, M., and Herthnek, D., Detection of rifampicin resistance in Mycobacterium tuberculosis by padlock probes and magnetic nanobead-based readout, PloS one, 2013, 8(4), e62015;
  • Mezger, A., Fock, J., Antunes, P., Østerberg, F.W., Boisen, A., Nilsson, M., Hansen, M.F., Ahlford, A., and Donolato, M., Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples, ACS Nano, 2015;
  • Minero, G.A.S., Fock, J., McCaskill, J.S., and Hansen, M.F., Optomagnetic detection of DNA triplex nanoswitches, Analyst, 2017, 142(4), 582-5;
  • Minero, G.A.S., Nogueira, C., Rizzi, G., Tian, B., Fock, J., Donolato, M., Strömberg, M., and Hansen, M.F., Sequence-specific validation of LAMP amplicons in real-time optomagnetic detection of Dengue serotype 2 synthetic DNA, Analyst, 2017, 142(18), 3441-50;
  • Tian, B., Ma, J., Zardán Gómez de la Torre, T., Bálint, A.d.m., Donolato, M., Hansen, M.F., Svedlindh, P., and Strömberg, M., Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout, Acs Sensors, 2016, 1(10), 1228-34;
  • Tian, B., Qiu, Z., Ma, J., de la Torre, T.Z.G., Johansson, C., Svedlindh, P., and Strömberg, M., Attomolar Zika virus oligonucleotide detection based on loop-mediated isothermal amplification and AC susceptometry, Biosensors and Bioelectronics, 2016, 86, 420-5;
  • Uddin, R., Burger, R., Donolato, M., Fock, J., Creagh, M., Hansen, M.F., and Boisen, A., Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano-and micro-sized magnetic beads, Biosensors and Bioelectronics, 2016, 85, 351-7;
  • Mima, Y., Fukumoto, S., Koyama, H., Okada, M., Tanaka, S., Shoji, T., Emoto, M., Furuzono, T., Nishizawa, Y., and Inaba, M., Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres, PLoS One, 2012, 7(4), e35199;
  • Mistlberger, G., and Klimant, I., Luminescent magnetic particles: structures, syntheses, multimodal imaging, and analytical applications, Bioanal Rev, 2010, 2, 61-101;
  • McBain, S., Yiu, H., El Haj, A., and Dobson, J., Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection, J Mater Chem, 2007, 17(24), 2561-5;
  • Wang, Z., Wang, L., Brown, S.I., Frank, T.G., and Cuschieri, A., Ferromagnetization of target tissues by interstitial injection of ferrofluid: formulation and evidence of efficacy for magnetic retraction, IEEE Trans Biomed Eng, 2009, 56(9), 2244-53;
  • Barnes, A.L., Wassel, R.A., Mondalek, F., Chen, K., Dormer, K.J., and Kopke, R.D., Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes, Biomagnetic research and technology, 2007, 5(1), 1;
  • Daldrup-Link, H.E., Rudelius, M., Oostendorp, R.A., Settles, M., Piontek, G., Metz, S., Rosenbrock, H., Keller, U., Heinzmann, U., and Rummeny, E.J., Targeting of Hematopoietic Progenitor Cells with MR Contrast Agents 1, Radiology, 2003, 228(3), 760-7;
  • Firouznia, K., Amirmohseni, S., Guiti, M., Amanpour, S., Baitollahi, A., Kharadmand, A.A., Mohagheghi, M., and Oghabian, M., MR relaxivity measurement of iron oxide nano-particles for MR lymphography applications, Pakistan Journal of Biological Sciences: PJBS, 2008, 11(4), 607-12;
  • Iyer, K.V., Pulford, S., Mogilner, A., and Shivashankar, G., Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport, Biophysical journal, 2012, 103(7), 1416-28;
  • Konkle, J.J., Goodwill, P.W., Saritas, E.U., and Conolly, S.M., Twenty-fold acquisition time improvement in 3D projection reconstruction MPI, Magnetic Particle Imaging (IWMPI), 2013 International Workshop on, 2013, 1-;
  • Kut, C., Zhang, Y., Hedayati, M., Zhou, H., Cornejo, C., Bordelon, D.E., Mihalic, J., Wabler, M., Burghardt, E., Grüttner, C., Geyh, A., Brayton, C., DeWeese, T.L., and Ivkov, R., Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice, Nanomedicine, 2012, 7, 1697-711;
  • Murray, A.R., Kisin, E., Inman, A., Young, S.-H., Muhammed, M., Burks, T., Uheida, A., Tkach, A., Waltz, M., and Castranova, V., Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro, Cell biochemistry and biophysics, 2013, 67(2), 461-76;
  • Rauwerdink, A.M., Giustini, A.J., and Weaver, J.B., Simultaneous quantification of multiple magnetic nanoparticle, Nanotechnology, 2010, 21, 455101;
  • Reitz, M., Demestre, M., Sedlacik, J., Meissner, H., Fiehler, J., Kim, S.U., Westphal, M., and Schmidt, N.O., Intranasal delivery of neural stem/progenitor cells: a noninvasive passage to target intracerebral glioma, Stem cells translational medicine, 2012, 1(12), 866-73;
  • Rimkus, G., Bremer-Streck, S., Grüttner, C., Kaiser, W.A., and Hilger, I., Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes, Contrast Media Mol Imaging, 2011, 6, 119-25;
  • Saharkhiz, H., Gharehaghaji, N., Nazarpoor, M., Mesbahi, A., and Pourissa, M., The effect of inversion time on the relationship between iron oxide nanoparticles concentration and signal intensity in T1-weighted MR images, Iranian Journal of Radiology, 2014, 11(2);
  • Shanehsazzadeh, S., Oghabian, M.A., Allen, B.J., Amanlou, M., Masoudi, A., and Daha, F.J., Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling, Journal of Medical Physics, 2013, 38(1), 34-40;
  • Tabatabaei, S.N., Lapointe, J., and Martel, S., Magnetic Nanoparticles Encapsulated in Hydrogel as Hyperthermic Actuators for microrobots Designed to Operate in the Vascular Network, online], http://ieeexplore ieee org/xpl/freeabs_all jsp, 2009;
  • Tabatabaei, S.N., and Martel, S., The concentration effect of magnetic iron oxide nanoparticles on temperature change for hyperthermic drug release applications via AC magnetic field, http://wikipolymtlca/nano/images/f/f8/C-2009-MRSUB-MMB-Nasrpdf, 2009;
  • Abdolahi, M., Shahbazi-Gahrouei, D., Laurent, S., Sermeus, C., Firozian, F., Allen, B.J., Boutry, S., and Muller, R.N., Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer, Contrast media & molecular imaging, 2013, 8(2), 175-84;
  • Abdollah, M.R., Kalber, T., Tolner, B., Southern, P., Bear, J.C., Robson, M., Pedley, R.B., Parkin, I.P., Pankhurst, Q.A., and Mulholland, P., Prolonging the circulatory retention of SPIONs using dextran sulfate: in vivo tracking achieved by functionalisation with near-infrared dyes, Faraday discussions, 2014, 175, 41-58;
  • Bhatia, S.N., Harris, T.J., Agarwal, A., Min, D.-h., Derfus, A.M., and Maltzahn, G.v., Delivery of nanoparticles and/or agents to cells, US 2008/0213377 A1, 2008;
  • Derfus, A.M., Maltzahn, G.v., and Bhatia, S.N., Remotely triggered release from heatable surfaces, US 086863, 2007;
  • Derfus, A.M., von Maltzahn, G., Harris, T.J., Duza, T., Vecchio, K.S., Ruoslahti, E., and Bhatia, S.N., Remotely triggered release from magnetic nanoparticles, Advanced Materials, 2007, 19(22), 3932-6;
  • Harris, T.J., von Maltzahn, G., Derfus, A.M., Ruoslahti, E., and Bhatia, S.N., Proteolytic Actuation of Nanoparticle Self‐Assembly, Angewandte Chemie, 2006, 118(19), 3233-7;
  • Kaittanis, C., Shaffer, T.M., Ogirala, A., Santra, S., Perez, J.M., Chiosis, G., Li, Y., Josephson, L., and Grimm, J., Environment-responsive Nanophores for Therapy and Treatment Monitoring via Molecular MRI Quenching, Nature communications, 2014, 5, 3384-, doi: 10.1038/ncomms4384;
  • Park, J.H., Maltzahn, G.v., Zhang, L., Derfus, A.M., Simberg, D., Harris, T.J., Ruoslahti, E., Bhatia, S.N., and Sailor, M., Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting, Small, 2009, 5(6), 694-700;
  • Simberg, D., Duza, T., Park, J.H., Essler, M., Pilch, J., Zhang, L., Derfus, A.M., Yang, M., Hoffman, R.M., Bhatia, S.N., Sailor, M.J., and Ruoslahti, E., Biomimetic amplification of nanoparticle homing to tumors, Proc Natl Acad Sci U S A, 2007, 104(3), 932-6;
  • Simberg, D., Park, J.H., Karmali, P.P., Zhang, W.-M., Merkulov, S., McCrae, K., Bhatia, S.N., Sailor, M., and Ruoslahti, E., Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance, Biomaterials, 2009, 30, 3926-33;
  • Tatsuki, F., Fumio, Y., Satoshi, Y., and Sachiko, I., Contrast Agent for photoacoustic imaging and photoacoustic imaging method, US 0081294, 2010, 12;
  • Girardi, G., Fraser, J., Lennen, R., Vontell, R., Jansen, M., and Hutchison, G., Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO)-conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development, Molecular psychiatry, 2015, 20(8), 1017-26;
  • Goldberg, J.L., and Halpern, A., Magnetic cells for localizing delivery and tissue repair, US 2011/0003003 A1, 2011;
  • Kallumadil, M., Tada, M., Nakagawa, T., Abe, M., Southern, P., and Pankhurst, Q.A., Suitability of commercial colloids for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 2009, 321(10), 1509-13;
  • Natarajan, A., Xiong, C.-Y., Grüttner, C., DeNardo, G.L., and DeNardo, S.J., Development of multivalent radioimmunonanoparticles for cancer imaging and therapy, Cancer Biother Radiopharm, 2008, 23(1), 82-91;
  • Shamsipour, F., Zarnani, A.H., Ghods, R., Chamankhah, M., Forouzesh, F., Vafaei, S., Bayat, A.A., Akhondi, M.M., Oghabian, M.A., and Jeddi-Tehrani, M., Conjugation of monoclonal antibodies to super paramagnetic iron oxide nanoparticles for detection of her2/neu antigen on breast cancer cell lines, Avicenna journal of medical biotechnology, 2009, 1(1), 27;
  • Al Faraj, A., Shaik, A.S., Pureza, M.A., Alnafea, M., and Halwani, R., Preferential Macrophage Recruitment and Polarization in LPS-Induced Animal Model for COPD: NoninvasiveTracking Using MRI, Plos ONE, 2014, 9(3), e90829;
  • Lahooti, A., Sarkar, S., Rad, H.S., Gholami, A., Nosrati, S., Muller, R.N., Laurent, S., Grüttner, C., Geramifar, P., and Yousefnia, H., PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent: a biodistribution study, Journal of Radioanalytical and Nuclear Chemistry, 2016, 1-6;
  • Ndong, C., Tate, J.A., Kett, W.C., Batra, J., Demidenko, E., Lewis, L.D., Hoopes, P.J., Gerngross, T.U., and Griswold, K.E., Tumor Cell Targeting by Iron Oxide Nanoparticles Is Dominated by Different Factors In Vitro versus In Vivo, PLoS ONE, 2015, 10(2), e0115636, doi: 10.1371/journal.pone.0115636;
  • DeNardo, S.J., DeNardo, G.L., Miers, L.A., Natarajan, A., Foreman, A.R., Gruettner, C., Adamson, G.N., and Ivkov, R., Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy, Clinical Cancer Research, 2005, 11(19), 7087s-92s;
  • DeNardo, S.J., deNardo, G.L., Natarajan, A., Miers, L.A., Foreman, A.R., Grüttner, C., Adamson, G.N., and Ivkov, R., Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice, Journal of Nuclear Medicine, 2007, 48(3), 437-44;
  • Ivkov, R., DeNardo, S.J., Miers, L.A., Natarajan, A., Foreman, A.R., Gruettner, C., Adamson, G.N., and DeNardo, G.L., Development of tumor targeting magnetic nanoparticles for cancer therapy, Nano Science and Technology Institute, 2006, 21NSTI;
  • McGill, S.L., Cuylear, C.L., Adolphi, N.L., Osinski, M., Member, S., IEEE, and Smyth, H.D.C., Magnetically Responsive Nanoparticles for Drug Delivery Applications Using Low Magnetic Field Strengths, IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2009, 8, 33-42;
  • Natarajan, A., Xiong, C.-Y., Grüttner, C., DeNardo, G.L., and DeNardo, S.J., Development of 111-In-DOTA-di-scFv-NP (Bioprobes) for cancer therapy, J Nucl Med, 2008, 48 (Suppl. 2), 71 P;
  • Vigor, K.L., Kyrtatos, P.G., Minogue, S., Al-Jamal, K.T., Kogelberg, H., Tolner, B., Kostarelos, K., Begent, R.H., Pankhurst, Q.A., Lythgoe, M.F., and Chester, K.A., Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells, Biomaterials, 2010, 31, 1307-15;
  • Kim, M.-H., Yamayoshi, I., Mathew, S., Lin, H., Nayfach, J., and Simon, S.I., Magnetic nanoparticle targeted hyperthermia of cutaneous staphylococcus aureus infection, Ann Biomed Eng, 2013, 41(3), 598-609;
  • Abdollah, M.R.A., Carter, T.J., Jones, C., Kalber, T.L., Rajkumar, V., Tolner, B., Gruettner, C., Zaw-Thin, M., Baguña Torres, J., Ellis, M., Robson, M., Pedley, R.B., Mulholland, P., T. M. de Rosales, R., and Chester, K.A., Fucoidan Prolongs the Circulation Time of Dextran-Coated Iron Oxide Nanoparticles, ACS Nano, 2018, doi: 10.1021/acsnano.7b06734;
  • Eberbeck, D., Dennis, C.L., Huls, N.F., Krycka, K.L., Gruttner, C., and Westphal, F., Multicore magnetic nanoparticles for magnetic particle imaging, IEEE TRANSACTIONS ON MAGNETICS, 2013, 49(1), 269-74;
  • Konkle, J.J., Goodwill, P.W., Hensley, D.W., Orendorff, R.D., Lustig, M., and Conolly, S.M., A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction, PloS one, 2015, 10(10), e0140137;
  • Zheng, B., Marc, P., Yu, E., Gunel, B., Lu, K., Vazin, T., Schaffer, D.V., Goodwill, P.W., and Conolly, S.M., Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo, Theranostics, 2016, 6(3), 291-301;
  • Drews, L.B., Croft, L.R., Kosuge, H., Saritas, E.U., Goodwill, P.W., McConnell, M.V., Conolly, S.M., and Tirrell, M.V., Imaging atherosclerotic plaques in vivo using peptide-functionalized iron oxide nanoparticles, Magnetic Particle Imaging (IWMPI), 2013 International Workshop on, 2013, 1-;
  • Kilian, T., Fidler, F., Kasten, A., Nietzer, S., Landgraf, V., Weiß, K., Walles, H., Westphal, F., Hackenberg, S., Grüttner, C., and Steinke, M., Stem cell labeling with iron oxide nanoparticles: impact of 3D culture on cell labeling maintenance, Nanomedicine, 2016, 11(15), 1957-70;
  • Böhmer, V., Dozol, J.-F., Grüttner, C., Liger, K., Matthews, S.E., Rudershausen, S., Saadioui, M., and Wang, P., Separation of lanthanides and actinides using magnetic silica particles bearing covalently attached tetra-CMPO-calix[4]arenes, Org Biomol Chem, 2004, 2, 2327-34;
  • Grüttner, C., Böhmer, V., Casnati, A., Dozol, J.-F., Reinhoudt, D.N., Reinoso-Garcia, M.M., Rudershausen, S., Teller, J., Ungaro, R., and Verboom, W., Dendrimer-coated magnetic particles for radionuclide separation, Journal of magnetism and magnetic materials, 2005, 293(1), 559-66;
  • Grüttner, C., Rudershausen, S., Matthews, S., Wang, P., Böhmer, V., and Dozol, J., Selective extraction of lanthanides and actinides by magnetic silica particles with CMPO-modified calix [4] arenes on the surface, European Cells and Materials, 2002, 3(2), 48-51;
  • Matthews, S.E., Parzuchowski, P., Garcia-Carrera, A., Grüttner, C., Dozol, J.-F., and Böhmer, V., Extraction of lanthanides and actinides by a magnetically assisted chemical separation technique based on CMPO-calix [4] arenesElectronic supplementary information (ESI) available: full synthetic procedures and extraction studies. See http://www. rsc. org/suppdata/cc/b0/b009679m, Chemical Communications, 2001, (5), 417-8;
  • Reinoso-García, M.M., Jańczewski, D., Reinhoudt, D.N., Verboom, W., Malinowska, E., Pietrzak, M., Hill, C., Báča, J., Grüner, B., and Selucky, P., CMP (O) tripodands: synthesis, potentiometric studies and extractions, New journal of chemistry, 2006, 30(10), 1480-92;
  • Bender, P., Fock, J., Frandsen, C., Hansen, M.F., Balceris, C., Ludwig, F., Posth, O., Wetterskog, E., Bogart, L.K., Southern, P., Szczerba, W., Zeng, L., Witte, K., Gruettner, C., Westphal, F., Honecker, D., González-Alonso, D., Fernández Barquín, L., and Johansson, C., Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers, The Journal of Physical Chemistry C, 2017, doi: 10.1021/acs.jpcc.7b11255;
  • Gavilán, H., Kowalski, A., Heinke, D., Sugunan, A., Sommertune, J., Varón, M., Bogart, L.K., Posth, O., Zeng, L., González-Alonso, D., Balceris, C., Fock, J., Wetterskog, E., Frandsen, C., Gehrke, N., Grüttner, C., Fornara, A., Ludwig, F., Veintemillas- Verdaguer, S., Johansson, C., and Puerto Morales, M., Colloidal Flower-Shaped Iron Oxide Nanoparticles: Synthesis Strategies and Coatings, Particle & Particle Systems Characterization, 2017, 1700094 doi: 10.1002/ppsc.201700094;
Unterkategorien: