Weiße Partikel

„Weiße” Partikel werden in einem Größenbereich von 10 nm bis 100 µm bereitgestellt. Entsprechend den Anwendungsgebieten stehen (bio)organische und anorganische Matrixmaterialien zur Verfügung:

Silikat (sicastar®)
Polystyrol / Polymethacrylat (micromer®)

Bitte wählen Sie einen Produkttyp aus, um Ihre spezielle Auswahl der Oberflächenfunktionalisierung und der Partikelgröße zu treffen.

1–200 von 250 Ergebnissen werden angezeigt

  • Wunderlich, G., Pinkert, J., Stintz, M., and Kotzerke, J., Labeling and biodistribution of different particle materials for radioembolization therapy with< sup> 188 Re, Applied Radiation and isotopes, 2005, 62(5), 745-50;
  • Kekalo, K., Baker, I., Meyers, R., and Shyong, J., Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field, Nano LIFE, 2015, 5(2), 1550002, doi: 10.1142/S1793984415500026;
  • Aernouts, B., Watté, R., Van Beers, R., Delport, F., Merchiers, M., De Block, J., Lammertyn, J., and Saeys, W., Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation, Optics Express, 2014, 22(17), 20223-38, doi: 10.1364/OE.22.020223;
  • Faramarzi, V., Light-Triggered molecular electronics in the 100nm size range, PhD thesis, 2011;
  • Kostner, S., and Vellekoop, M.J., Microsystems for optical cell detection: Near versus far field, Particle & Particle Systems Characterization, 2008, 25(1), 92-8;
  • Namboodiri, S.V., Hardt, S., and George, S.D., Photodegradation of optically trapped polystyrene Beads at 422 nm, World Academy of Science, Engineering and Technology, 2010, 69, 520-3;
  • Nishikawa, T., Iwakiri, N., Kaneko, Y., Taguchi, A., Fukushima, K., Mori, H., Morone, N., and Kadokawa, J.-i., Nitric Oxide Release in Human Aortic Endothelial Cells Mediated by Delivery of Amphiphilic Polysiloxane Nanoparticles to Caveolae, Biomacromolecules, 2009, 10, 2074-85;
  • Schleh, C., Muhlfeld, C., Pulskamp, K., Schmiedl, A., Nassimi, M., Lauenstein, H.D., Braun, A., Krug, N., Erpenbeck, V.J., and Hohlfeld, J.M., The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure, Respir Res, 2009, 10, 90;
  • Sauerbeck, C., Braunschweig, B., and Peukert, W., Surface Charging and Interfacial Water Structure of Amphoteric Colloidal Particles, The Journal of Physical Chemistry C, 2014;
  • Sato, H., Masubuchi, Y., and Watanabe, H., DNA diffusion in aqueous solution in presence of suspended particles, Journal of Polymer Science Part B: Polymer Physics, 2009, 47(11), 1103-11;
  • Wattendorf, U., Towards receptor-specific targeting of antigen presenting cells with functionalized stealth microparticles, PhD thesis, 2008;
  • Bakry, R., Gjerde, D., and Bonn, G., Derivatized nanoparticle coated capillaries for purification and micro-extraction of proteins and peptides, Journal of proteome research, 2006, 5(6), 1321-31;
  • Steinbock, L.J., Stober, G., and Keyser, U.F., Sensing DNA-coatings of microparticles using micropipettes, Biosens Bioelectron, 2009, 24, 2423-7;
  • Bueter, C.L., Lee, C.K., Rathinam, V.A.K., Healy, G.J., Taron, C.H., Specht, C.A., and Levitz, S.M., Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis, J Biol Chem, 2011, 286, 35447- 55;
  • Mejean, C.O., Schaefer, A.W., Millman, E.A., Forscher, P., and Dufresne, E.R., Multiplexed force measurements on live cells with holographic optical tweezers, Opt Express, 2009, 17(8), 6209- 17;
  • Beitz, E., Güttler, C., Blum, J., Meisner, T., Teiser, J., and Wurm, G., Low-velocity collisions of centimeter-sized dust aggregates, The Astrophysical Journal, 2011, 736(1), 34;
  • Blum, J., and Schräpler, R., Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition, Physical review letters, 2004, 93(11), 115503;
  • Blum, J., Schräpler, R., Davidsson, B.J., and Trigo-Rodríguez, J.M., The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the solar system, The Astrophysical Journal, 2006, 652(2), 1768;
  • Boenigk, J., and Novarino, G., Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates, Aquatic microbial ecology, 2004, 34(2), 181-92;
  • Boenigk, J., Wiedlroither, A., and Pfandl, K., Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties, Aquat Toxicol, 2005, 71, 249-59;
  • Chen, X.-Z., Shamsudhin, N., Hoop, M., Pieters, R., Siringil, E., Sakar, M.S., Nelson, B.J., and Pane, S., Magnetoelectric micromachines with wirelessly controlled navigation and functionality, Materials Horizons, 2016, 3(2), 113-8, doi: 10.1039/C5MH00259A;
  • Denisov, D., Dang, M.T., Struth, B., Wegdam, G., and Schall, P., Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology, Scientific Reports, 2013, 3, 1631;
  • Fujioka, K., Hanada, S., Inoue, Y., Sato, K., Hirakuri, K., Shiraishi, K., Kanaya, F., Ikeda, K., Usui, R., and Yamamoto, K., Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers, International journal of molecular sciences, 2014, 15(7), 11742-59;
  • Goldenberg, L.M., Wagner, J., Stumpe, J., Paulke, B.-R., and Görnitz, E., Simple method for the preparation of colloidal particle monolayers at the water/alkane interface, Langmuir, 2002, 18(14), 5627-9;
  • Hasezaki, T., Isoda, K., Kondoh, M., Tsutsumi, Y., and Yagi, K., Hepatotoxicity of silica nanoparticles with a diameter of 100 nm, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2011, 66(9), 698-703;
  • Hata, K., Higashisaka, K., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S.-i., Yoshioka, Y., and Tsutsumi, Y., Evaluation of silica nanoparticle binding to major human blood proteins, Nanoscale Research Letters, 2014, 9(1), 668;
  • Heim, L.-O., Butt, H.-J., Blum, J., and Schräpler, R., A new method for the analysis of compaction processes in high-porosity agglomerates, Granular Matter, 2008, 10(2), 89-91;
  • Heim, L.-O., Butt, H.-J., Schräpler, R., and Blum, J., Analyzing the Compaction of High-Porosity Microscopic Agglomerates, Aust J Chem, 2005, 58, 671-3;
  • Higashisaka, K., Kunieda, A., Iwahara, Y., Tanaka, K., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S.-i., Yoshioka, Y., and Tsutsumi, Y., Neutrophilia Due to Silica Nanoparticles Induces Release of Double-Stranded DNA, Journal of Nanomedicine & Nanotechnology, 2014, 5(5), 1;
  • Higashisaka, K., Yoshioka, Y., Yamashita, K., Morishita, Y., Fujimura, M., Nabeshi, H., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S.-i., Yoshikawa, T., Itoh, N., and Tsutsumi, Y., Acute phase proteins as biomarkers for predicting the exposure and toxicity of nanomaterials, Biomaterials, 2011, 32, 3-9;
  • Higashisaka, K., Yoshioka, Y., Yamashita, K., Morishita, Y., Pan, H., Ogura, T., Nagano, T., Kunieda, A., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S.-i., Nabeshi, H., Yoshikawa, T., and Tsutsumi, Y., Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles, Nanoscale Res Lett, 2012, 7, 555;
  • Hirai, T., Yoshikawa, T., Nabeshi, H., Yoshida, T., Tochigi, S., Ichihashi, K.-i., Uji, M., Akase, T., Nagano, K., and Abe, Y., Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection, Part Fibre Toxicol, 2012, 9(3);
  • Langkowski, D., Teiser, J., and Blum, J., The physics of protoplanetesimal dust agglomerates. II. Low-velocity collision properties, The Astrophysical Journal, 2008, 675(1), 764;
  • Li, X., Kondoh, M., Watari, A., Hasezaki, T., Isoda, K., Tsutsumi, Y., and Yagi, K., Effect of 70-nm silica particles on the toxicity of acetaminophen, tetracycline, trazodone, and 5-aminosalicylic acid in mice, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2011, 66(4), 282-6;
  • Lu, X., Tian, Y., Zhao, T., Xiao, S., and Fan, X., Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice, Nanotechnology, 2011, 22(5), 055101;
  • Morishige, T., Yoshioka, Y., Inakura, H., Tanabe, A., Yao, X., Narimatsu, S., Monobe, Y., Imazawa, T., Tsunoda, S.-i., Tsutsumi, Y., Mukai, Y., Okada, N., and Nakagawa, S., The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1ß production, ROS production and endosomal rupture, Biomaterials, 2010, 6833-42;
  • Nabeshi, H., Yoshikawa, T., Akase, T., Yoshida, T., Tochigi, S., Hirai, T., Uji, M., Ichihashi, K.-i., Yamashita, T., and Higashisaka, K., Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages, Nanoscale research letters, 2011, 6(1), 1-5;
  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y., and Yagi, K., Influence of 70 nm silica particles in mice with cisplatin or paraquat-induced toxicity, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2009, 64(6), 395-7;
  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S.-i., Tsutsumi, Y., and Yagi, K., Histological analysis of 70-nm silica particles-induced chronic toxicity in mice, European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72(3), 626-9;
  • Oh-e, M., Yokoyama, H., Koeberg, M., Hendry, E., and Bonn, M., High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids, Optics Express, 2006, 14(23), 11433-41;
  • Oh-e, M., Yokoyama, H., Koeberg, M., Hendry, E., and Bonn, M., Liquid Crystal Colloids Studied by THz Time-Domain Spectroscopy, Molecular Crystals and Liquid Crystals, 2008, 480(1), 21-8;
  • Paul, J., Romeis, S., Tomas, J., and Peukert, W., A review of models for single particle compression and their application to silica microspheres, Advanced Powder Technology, 2014, 25, 136-53, doi: http://dx.doi.org/10.1016/j.apt.2013.09.009;
  • Pfandl, K., and Boenigk, J., Stuck in the mud: suspended sediments as a key issue for survival of chrysomonad flagellates, Aquatic microbial ecology, 2006, 45(1), 89-99;
  • Poppe, T., Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates, Icarus, 2003, 164(1), 139-48;
  • Price, M.C., Kearsley, A.T., Burchell, M., Hörz, F., Borg, J., Bridges, J.C., Cole, M.J., Floss, C., Graham, G., and Green, S.F., Comet 81P/Wild 2: The size distribution of finer (sub‐10 μm) dust collected by the Stardust spacecraft, Meteoritics & Planetary Science, 2010, 45(9), 1409-28;
  • Rahmani, Y., Koopman, R., Denisov, D., and Schall, P., Probing incipient plasticity by indenting colloidal glasses, Scientific reports, 2013, 3;
  • Ramsteiner, I., Jensen, K.E., Weitz, D.A., and Spaepen, F., Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfaces, Physical Review E, 2009, 79(1), 011403;
  • Ramsteiner, I., Weitz, D., and Spaepen, F., Stiffness of the crystal-liquid interface in a hard-sphere colloidal system measured from capillary fluctuations, Physical Review E, 2010, 82(4), 041603;
  • Reicherter, M., Gorski, W., Haist, T., and Osten, W., Dynamic correction of aberrations in microscopic imaging systems using an artificial point source, SPIE USE, 2004, 3, 5462-11;
  • Romeis, S., Paul, J., and Peukert, W., A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM, Rev Sci Instrum, 2012, 83, 095105;
  • Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Visualization of Dislocation Dynamics in Colloidal Crystals, Science, 2004, 305, 1944-8;
  • Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Visualizing dislocation nucleation by indenting colloidal crystals, Nature, 2006, 440, 319-23;
  • Totoki, S., Yamamoto, G., Tsumoto, K., Uchiyama, S., and Fukui, K., Quantitative Laser Diffraction Method for the Assessment of Protein Subvisible Particles, Journal of Pharmaceutical Sciences, 2015, 104(2), 618-26, doi: 10.1002/jps.24288;
  • Hinojosa, B.R., Nanoparticles engineered to bind serum albumin: Microwave assisted synthesis , characterization, and functionalization of fuorescently-labeled, acrylate- based, polymer nanoparticles, PhD thesis, 2010;
  • Morishige, T., Yoshioka, Y., Inakura, H., Tanabe, A., Yao, X., Tsunoda, S., Tsutsumi, Y., Mukai, Y., Okada, N., and Nakagawa, S., Cytotoxicity of amorphous silica particles against macrophage-like THP-1 cells depends on particle-size and surface properties, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2010, 65(8), 596-9;
  • Oehrlein, S.M., Sanchez-Perez, J.R., Jacobson, R., Flack, F.S., Kershner, R.J., and Lagally, M.G., Translation and manipulation of silicon nanomembranes using holographic optical tweezers, Nanoscale research letters, 2011, 6(1), 1-7;
  • Willmott, G., Vogel, R., Yu, S., Groenewegen, L., Roberts, G., Kozak, D., Anderson, W., and Trau, M., Use of tunable nanopore blockade rates to investigate colloidal dispersions, Journal of Physics: Condensed Matter, 2010, 22(45), 454116;
  • Claudet, C., Angelov, D., Bouvet, P., Dimitrov, S., and Bednar, J., Histone octamer instability under single molecule experiment conditions, J Biol Chem, 2005, 280(20), 19958-65;
  • Delport, F., Deres, A., Hotta, J.-i., Pollet, J., and al., e., Improved methods for counting DNA molecules on biofunctionalized nanoparticles, Langmuir, 2010, 26(3), 1594-7;
  • Guthaus, E., Bürgle, M., Schmiedeberg, N., Hocke, S., Eickler, A., Kramer, M.D., Sweep, C.G.J.F., Magdolen, V., Kessler, H., and Schmitt, M., uPA-Silica-Particles (SP-uPA): A novel analytical system to investigate uPA-uPAR-interaction and to test synthetic uPAR-antagonists as potential cancer therapeutics, Biolog Chem, 2002, 383(1), 207-16;
  • Guthaus, E., Schmiedeberg, N., Bürgle, M., Magdolen, V., Kessler, H., and Schmitt, M., The urokinase receptor (uPAR, CD87) as a target for tumor therapy: uPA-Silica-Particles (SP-uPA) as a new tool to assess synthetic peptides to interfere with uPA/uPA-receptor interaction (Review), Recent Results Cancer Res, 2003, 162, 3-14;
  • Pang, L., Farkas, K., Bennett, G., Varsani, A., Easingwood, R., Tilley, R., Nowostawska, U., and Lin, S., Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles, Water research, 2014, 62, 167-79;
  • Isobe, K., Suda, A., Hashimoto, H., Kannari, F., and al., e., High-resolution fluorescence microscopy based on a cyclic sequential multiphoton process, Biomedical Optics Express, 2010, 1(3), 791-7;
  • Suter, D.M., Schaefer, A.W., and Forscher, P., Microtubule dynamics are necessary for src family kinase-dependent growth cone steering, Current Biology, 2004, 14, 1194-9;
  • Luderer, F., Löbler, M., Rohm, H.W., Gocke, C., Kunna, K., Köck, K., Kroemer, H.K., Weitschies, W., Schmitz, K.-P., and Sternberg, K., Biodegradable Sirolimus- loaded Poly(lactide) Nanoparticles as Drug Delivery System for the Prevention of In-Stent Restenosis in Coronary Stent Application, J Biomater Appl, 2011, 25, 851-75;
  • Mima, Y., Fukumoto, S., Koyama, H., Okada, M., Tanaka, S., Shoji, T., Emoto, M., Furuzono, T., Nishizawa, Y., and Inaba, M., Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres, PLoS One, 2012, 7(4), e35199;
  • Moeller, S., Kegler, R., Sternberg, K., and Mundkowski, R.G., Influence of sirolimus-loaded nanoparticles on physiological functions of native human polymorphonuclear neutrophils, Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(8), 1293-300;
  • Weidmann, A., Kwittner, S., Beck, R., Teller, J., Jonas, L., and Nebe, B.J., Prevention of Lens Epithelial Cell Growth In Vitro Using Mibefradil- Containing PLGA Micro Particles, The Open Ophthalmology Journal, 2008, 2, 112- 8;