Plain

BNF-Dextran- oder BNF-Starch-Partikel mit der Oberfläche "plain" besitzen eine unmodifizierte Dextran- bzw. Hydroxyethyl-Stärke-Oberfläche. Sie sind thermisch geblockt bei Raumtemperatur und zeigen spezifische Wechselwirkungen mit magnetischen Wechselfeldern (Dennis et al. 2008 und 2009; Krycka et al., 2011; Bordelon et al., 2011).  Die 100 nm – Partikel können mit konventionellen Permanentmagneten separiert werden, während die 80 nm – Partikel vorzugsweise im Hochgradientenmagnetfeld separiert werden. Die BNF-Partikel können einfach durch 0,22 µm-Filter filtriert werden und werden als Suspension in Wasser ohne Zusatz von Detergenzien geliefert.

Zeigt alle 4 Ergebnisse

Referenzen
  • Ahrentorp, F., Astalan, A., Blomgren, J., Jonasson, C., Wetterskog, E., Svedlindh, P., Lak, A., Ludwig, F., van IJzendoorn, L.J., and Westphal, F., Effective particle magnetic moment of multi-core particles, Journal of Magnetism and Magnetic Materials, 2015, 380, 221-6;
  • Al Faraj, A., Shaik, A., Shaik, A., and Al Sayed, B., Enhanced magnetic delivery of superparamagnetic iron oxide nanoparticles to the lung monitored using noninvasive MR, Journal of Nanoparticle Research, 2014, 16(10), 1-11, doi: 10.1007/s11051-014-2667-9;
  • Attaluri, A., Kandala, S.K., Wabler, M., Zhou, H., Cornejo, C., Armour, M., Hedayati, M., Zhang, Y., DeWeese, T.L., Herman, C., and Ivkov, R., Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer, International Journal of Hyperthermia, 0(0), 1-16, doi: doi:10.3109/02656736.2015.1005178;
  • Attaluri, A., Seshadri, M., Mirpour, S., Wabler, M., Marinho, T., Furqan, M., Zhou, H., De Paoli, S., Gruettner, C., Gilson, W., DeWeese, T., Garcia, M., Ivkov, R., and Liapi, E., Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study, International Journal of Hyperthermia, 2016, 1-15, doi: 10.3109/02656736.2016.1159737;
  • Bordelon, D.E., Cornejo, C., Grüttner, C., Westphal, F., DeWeese, T.L., and Ivkov, R., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, Journal of Applied Physics, 2011, 109(12), 124904;
  • Branquinho, L., C., Carrião, M., S., Costa, A., S. , Zufelato, N., Sousa, M., H. , Miotto, R., Ivkov, R., and Bakuzis, A., F. , Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, Scientific Reports, 2013, 3, 2887, doi: 10.1038/srep02887;
  • Cuny, L., Herrling, M.P., Guthausen, G., Horn, H., and Delay, M., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, Journal of contaminant hydrology, 2015, 182, 51-62;
  • Dennis, C., Jackson, A., Borchers, J., Hoopes, P., Strawbridge, R., Foreman, A., Van Lierop, J., Grüttner, C., and Ivkov, R., Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology, 2009, 20(39), 395103;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Hoopes, P., Strawbridge, R., Pierce, Z., Goerntiz, E., and Lau, J., The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia, Journal of Physics D: Applied Physics, 2008, 41(13), 134020;
  • Dennis, C., Jackson, A., Borchers, J., Ivkov, R., Foreman, A., Lau, J., Goernitz, E., and Gruettner, C., The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles, Journal of Applied Physics, 2008, 103(7), 07A319;
  • Dennis, C.L., Krycka, K.L., Borchers, J.A., Desautels, R.D., van Lierop, J., Huls, N.F., Jackson, A.J., Gruettner, C., and Ivkov, R., Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field, Advanced Functional Materials, 2015, 25(27), 4300-11;
  • Fock, J., Jonasson, C., Johansson, C., and Hansen, M.F., Characterization of fine particles using optomagnetic measurements, Physical Chemistry Chemical Physics, 2017, 19(13), 8802-14;
  • Giustini, A., Ivkov, R., and Hoopes, P., Magnetic nanoparticle biodistribution following intratumoral administration, Nanotechnology, 2011, 22(34), 345101;
  • Giustini, A.J., Perreard, I., Rauwerdink, A.M., Hoopes, P.J., and Weaver, J.B., Noninvasive assessment of magnetic nanoparticle–cancer cell interactions, Integrative Biology, 2012, 4(10), 1283-8;
  • Giustini, A.J., Petryk, A.A., and Hoopes, P.J., Ionization radiation increases systemic nanoparticle tumor accumulation, Nanomedicine, 2012, 8(6), 818-21;
  • Grüttner, C., Müller, K., Teller, J., and Westphal, F., Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications, International Journal of Hyperthermia, 2013, 29(8), 777-89;
  • Gutierrez, L., Costo, R., Gruettner, C., Westphal, F., Gehrke, N., Heinke, D., Fornara, A., Pankhurst, Q.A., Johansson, C., and Veintemillas-Verdaguer, S., Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications, Dalton transactions, 2015, 44, 2943-52;
  • Hedayati, M., Abubaker-Sharif, B., Khattab, M., Razavi, A., Mohammed, I., Nejad, A., Wabler, M., Zhou, H., Mihalic, J., Gruettner, C., DeWeese, T., and Ivkov, R., An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles, International Journal of Hyperthermia, 2017, 1-9, doi: 10.1080/02656736.2017.1354403;
  • Hedayati, M., Thomas, O., Abubaker-Sharif, B., Zhou, H., Cornejo, C., Zhang, Y., Wabler, M., Mihalic, J., Grüttner, C., Westphal, F., Geyt, A., DeWeese, T.L., and Ivkov, R., The effect of cell-cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors, Nanomedicine, 2012, 8(1), 29-41;
  • Hoopes, P.J., Petryk, A.A., Gimi, B., Giustini, A.J., Weaver, J.B., Bischof, J., Chamberlain, R., and Garwood, M., In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution, Proceedings of SPIE, 2012, 8317;
  • Kasten, A., Grüttner, C., Kühn, J.-P., Bader, R., Pasold, J., and Frerich, B., Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells, PloS one, 2014, 9(9), e108055;
  • Kasten, A., Siegmund, B.J., Grüttner, C., Kühn, J.-P., and Frerich, B., Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types, Journal of Magnetism and Magnetic Materials, 2015, 380, 34-8, doi: 10.1016/j.jmmm.2014.08.044;
  • Krycka, K., Jackson, A., Borchers, J., Shih, J., Briber, R., Ivkov, R., Grüttner, C., and Dennis, C., Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis, Journal of Applied Physics, 2011, 109(7), 07B513;
  • Ludwig, F., Kazakova, O., Barquin, L.F., Fornara, A., Trahms, L., Steinhoff, U., Svedlindh, P., Wetterskog, E., Pankhurst, Q.A., and Southern, P., Magnetic, Structural, and Particle Size Analysis of Single-and Multi-Core Magnetic Nanoparticles, Magnetics, IEEE Transactions on, 2014, 50(11), 1-4;
  • Mukherjee, A., Castanares, M., Hedayati, M., Wabler, M., Trock, B., Kulkarni, P., Rodriguez, R., Getzenberg, R.H., DeWeese, T.L., and Ivkov, R., Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor, Nanomedicine, 2014, 9(18), 2729-43;
  • Østerberg, F.W., Rizzi, G., Henriksen, A.D., and Hansen, M.F., Planar Hall effect bridge geometries optimized for magnetic bead detection, Journal of Applied Physics, 2014, 115(18), 184505;
  • Ostrovska, L., Nanoparticle loaded stem cells and their use in MRI guided hyperthermia, US 2012/0283503 A1, 2012;
  • Pearce, J., Giustini, A., Stigliano, R., and Jack Hoopes, P., Magnetic Heating of Nanoparticles: The Importance of Particle Clustering to Achieve Therapeutic Temperatures, Journal of Nanotechnology in Engineering and Medicine, 2013, 4(1), 0110071-01100714, doi: 10.1115/1.4024904;
  • Perreard, I., Reeves, D., Zhang, X., Kuehlert, E., Forauer, E., and Weaver, J., Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times, Physics in medicine and biology, 2014, 59(5), 1109;
  • Petryk, A.A., Giustini, A.J., Gottesman, R.E., Trembly, B.S., and Hoopes, P.J., Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model, International Journal of Hyperthermia, 2013, 29(8), 819-27;
  • Ranzinger, F., Herrling, M.P., Lackner, S., Grande, V.W., Baniodeh, A., Powell, A.K., Horn, H., and Guthausen, G., Direct surface visualization of biofilms with high spin coordination clusters using Magnetic Resonance Imaging, Acta biomaterialia, 2016, 31, 167-77;
  • Reeves, D.B., and Weaver, J.B., Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field, Journal of physics D: Applied physics, 2014, 47(4), 045002;
  • Shubitidze, F., Kekalo, K., Stigliano, R., and Baker, I., Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy, Journal of Applied Physics, 2015, 117(9), 094302, doi: 10.1063/1.4907915;
  • Siegmund, B.J., Kasten, A., Kühn, J.-P., Winter, K., Grüttner, C., and Frerich, B., MRI-tracking of transplanted human ASC in a SCID mouse model, Journal of Magnetism and Magnetic Materials, 2017, 427, 151-5;
  • Soetaert, F., Kandala, S.K., Bakuzis, A., and Ivkov, R., Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles, Scientific Reports, 2017, 7(1), 6661, doi: 10.1038/s41598-017-07088-w;
  • Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R., and Artemov, D., Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content, International Journal of Hyperthermia, 2014, 30(3), 192-200;
  • Weaver, J.B., and Kuehlert, E., Measurement of magnetic nanoparticle relaxation time, Med Phys, 2012, 39(5), 2765-70;
  • Weaver, J.B., Zhang, X., Kuehlert, E., Toraya-Brown, S., Reeves, D.B., Perreard, I.M., and Fiering, S.N., Magnetic Nanoparticle Quantitation with Low Frequency Magnetic Fields: Compensating for Relaxation Effects, Nanotechnology, 2013, 24(32), 325502-, doi: 10.1088/0957-4484/24/32/325502;
  • Witte, K., Müller, K., Grüttner, C., Westphal, F., and Johansson, C., Particle size-and concentration-dependent separation of magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 2017, 427, 320-4;
  • Zadnik, P.L., Molina, C.A., Sarabia-Estrada, R., Groves, M.L., Wabler, M., Mihalic, J., McCarthy, E.F., Gokaslan, Z.L., Ivkov, R., and Sciubba, D., Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease: Laboratory investigation, Journal of Neurosurgery: Spine, 2014, 20(6), 740-50;