sicastar®-Partikel mit der Oberfläche "plain" haben eine hydrophile Oberfläche mit terminalen Si-OH-Gruppen ohne zusätzliche funktionelle Gruppen auf der Oberfläche. Sie sind im Größenbereich von 10 nm bis 20 µm als Suspension in Wasser oder auf Anfrage als Pulver erhältlich. Die nichtporösen sicastar® -Partikel haben schmale monomodale Größenverteilungen mit Polydispersitätsindizes < 0,2. Die größeren porösen sicastar®-Partikel weisen breitere Größenverteilungen von 3 ± 0,5 µm, 4 ± 0,5 µm, 5 ± 0,8 µm, 10 ± 2,5 µm, 15 ± 4,0 µm und 20 ± 11,5 µm auf.
Die Partikel werden als Suspension in Wasser ohne Zusatz von Detergenzien geliefert.

Zeigt alle 17 Ergebnisse

  • Beitz, E., Güttler, C., Blum, J., Meisner, T., Teiser, J., and Wurm, G., Low-velocity collisions of centimeter-sized dust aggregates, The Astrophysical Journal, 2011, 736(1), 34;
  • Blum, J., and Schräpler, R., Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition, Physical review letters, 2004, 93(11), 115503;
  • Blum, J., Schräpler, R., Davidsson, B.J., and Trigo-Rodríguez, J.M., The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the solar system, The Astrophysical Journal, 2006, 652(2), 1768;
  • Boenigk, J., and Novarino, G., Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates, Aquatic microbial ecology, 2004, 34(2), 181-92;
  • Boenigk, J., Wiedlroither, A., and Pfandl, K., Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties, Aquat Toxicol, 2005, 71, 249-59;
  • Chen, X.-Z., Shamsudhin, N., Hoop, M., Pieters, R., Siringil, E., Sakar, M.S., Nelson, B.J., and Pane, S., Magnetoelectric micromachines with wirelessly controlled navigation and functionality, Materials Horizons, 2016, 3(2), 113-8, doi: 10.1039/C5MH00259A;
  • Denisov, D., Dang, M.T., Struth, B., Wegdam, G., and Schall, P., Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology, Scientific Reports, 2013, 3, 1631;
  • Faramarzi, V., Light-Triggered molecular electronics in the 100nm size range, PhD thesis, 2011;
  • Fujioka, K., Hanada, S., Inoue, Y., Sato, K., Hirakuri, K., Shiraishi, K., Kanaya, F., Ikeda, K., Usui, R., and Yamamoto, K., Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers, International journal of molecular sciences, 2014, 15(7), 11742-59;
  • Goldenberg, L.M., Wagner, J., Stumpe, J., Paulke, B.-R., and Görnitz, E., Simple method for the preparation of colloidal particle monolayers at the water/alkane interface, Langmuir, 2002, 18(14), 5627-9;
  • Hasezaki, T., Isoda, K., Kondoh, M., Tsutsumi, Y., and Yagi, K., Hepatotoxicity of silica nanoparticles with a diameter of 100 nm, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2011, 66(9), 698-703;
  • Hata, K., Higashisaka, K., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S.-i., Yoshioka, Y., and Tsutsumi, Y., Evaluation of silica nanoparticle binding to major human blood proteins, Nanoscale Research Letters, 2014, 9(1), 668;
  • Heim, L.-O., Butt, H.-J., Blum, J., and Schräpler, R., A new method for the analysis of compaction processes in high-porosity agglomerates, Granular Matter, 2008, 10(2), 89-91;
  • Heim, L.-O., Butt, H.-J., Schräpler, R., and Blum, J., Analyzing the Compaction of High-Porosity Microscopic Agglomerates, Aust J Chem, 2005, 58, 671-3;
  • Higashisaka, K., Kunieda, A., Iwahara, Y., Tanaka, K., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S.-i., Yoshioka, Y., and Tsutsumi, Y., Neutrophilia Due to Silica Nanoparticles Induces Release of Double-Stranded DNA, Journal of Nanomedicine & Nanotechnology, 2014, 5(5), 1;
  • Higashisaka, K., Yoshioka, Y., Yamashita, K., Morishita, Y., Fujimura, M., Nabeshi, H., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S.-i., Yoshikawa, T., Itoh, N., and Tsutsumi, Y., Acute phase proteins as biomarkers for predicting the exposure and toxicity of nanomaterials, Biomaterials, 2011, 32, 3-9;
  • Higashisaka, K., Yoshioka, Y., Yamashita, K., Morishita, Y., Pan, H., Ogura, T., Nagano, T., Kunieda, A., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S.-i., Nabeshi, H., Yoshikawa, T., and Tsutsumi, Y., Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles, Nanoscale Res Lett, 2012, 7, 555;
  • Hirai, T., Yoshikawa, T., Nabeshi, H., Yoshida, T., Tochigi, S., Ichihashi, K.-i., Uji, M., Akase, T., Nagano, K., and Abe, Y., Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection, Part Fibre Toxicol, 2012, 9(3);
  • Langkowski, D., Teiser, J., and Blum, J., The physics of protoplanetesimal dust agglomerates. II. Low-velocity collision properties, The Astrophysical Journal, 2008, 675(1), 764;
  • Li, X., Kondoh, M., Watari, A., Hasezaki, T., Isoda, K., Tsutsumi, Y., and Yagi, K., Effect of 70-nm silica particles on the toxicity of acetaminophen, tetracycline, trazodone, and 5-aminosalicylic acid in mice, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2011, 66(4), 282-6;
  • Lu, X., Tian, Y., Zhao, T., Xiao, S., and Fan, X., Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice, Nanotechnology, 2011, 22(5), 055101;
  • Morishige, T., Yoshioka, Y., Inakura, H., Tanabe, A., Yao, X., Narimatsu, S., Monobe, Y., Imazawa, T., Tsunoda, S.-i., Tsutsumi, Y., Mukai, Y., Okada, N., and Nakagawa, S., The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1ß production, ROS production and endosomal rupture, Biomaterials, 2010, 6833-42;
  • Nabeshi, H., Yoshikawa, T., Akase, T., Yoshida, T., Tochigi, S., Hirai, T., Uji, M., Ichihashi, K.-i., Yamashita, T., and Higashisaka, K., Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages, Nanoscale research letters, 2011, 6(1), 1-5;
  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y., and Yagi, K., Influence of 70 nm silica particles in mice with cisplatin or paraquat-induced toxicity, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2009, 64(6), 395-7;
  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S.-i., Tsutsumi, Y., and Yagi, K., Histological analysis of 70-nm silica particles-induced chronic toxicity in mice, European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72(3), 626-9;
  • Oh-e, M., Yokoyama, H., Koeberg, M., Hendry, E., and Bonn, M., High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids, Optics Express, 2006, 14(23), 11433-41;
  • Oh-e, M., Yokoyama, H., Koeberg, M., Hendry, E., and Bonn, M., Liquid Crystal Colloids Studied by THz Time-Domain Spectroscopy, Molecular Crystals and Liquid Crystals, 2008, 480(1), 21-8;
  • Paul, J., Romeis, S., Tomas, J., and Peukert, W., A review of models for single particle compression and their application to silica microspheres, Advanced Powder Technology, 2014, 25, 136-53, doi:;
  • Pfandl, K., and Boenigk, J., Stuck in the mud: suspended sediments as a key issue for survival of chrysomonad flagellates, Aquatic microbial ecology, 2006, 45(1), 89-99;
  • Poppe, T., Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates, Icarus, 2003, 164(1), 139-48;
  • Price, M.C., Kearsley, A.T., Burchell, M., Hörz, F., Borg, J., Bridges, J.C., Cole, M.J., Floss, C., Graham, G., and Green, S.F., Comet 81P/Wild 2: The size distribution of finer (sub‐10 μm) dust collected by the Stardust spacecraft, Meteoritics & Planetary Science, 2010, 45(9), 1409-28;
  • Rahmani, Y., Koopman, R., Denisov, D., and Schall, P., Probing incipient plasticity by indenting colloidal glasses, Scientific reports, 2013, 3;
  • Ramsteiner, I., Jensen, K.E., Weitz, D.A., and Spaepen, F., Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfaces, Physical Review E, 2009, 79(1), 011403;
  • Ramsteiner, I., Weitz, D., and Spaepen, F., Stiffness of the crystal-liquid interface in a hard-sphere colloidal system measured from capillary fluctuations, Physical Review E, 2010, 82(4), 041603;
  • Reicherter, M., Gorski, W., Haist, T., and Osten, W., Dynamic correction of aberrations in microscopic imaging systems using an artificial point source, SPIE USE, 2004, 3, 5462-11;
  • Romeis, S., Paul, J., and Peukert, W., A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM, Rev Sci Instrum, 2012, 83, 095105;
  • Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Visualization of Dislocation Dynamics in Colloidal Crystals, Science, 2004, 305, 1944-8;
  • Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Visualizing dislocation nucleation by indenting colloidal crystals, Nature, 2006, 440, 319-23;
  • Totoki, S., Yamamoto, G., Tsumoto, K., Uchiyama, S., and Fukui, K., Quantitative Laser Diffraction Method for the Assessment of Protein Subvisible Particles, Journal of Pharmaceutical Sciences, 2015, 104(2), 618-26, doi: 10.1002/jps.24288;