sicastar®

Silikatpartikel (sicastar®)

  • werden im Größenbereich von 10 nm bis 1,5 µm mit einer Dichte von 2,0 g/cm³  als monodisperse und unporöse Partikel angeboten,
  • haben eine breitere Größenverteilung im Bereich der porösen Silikatpartikel mit abgestuften Durchmessern zwischen 3 und 20 µm und eine Dichte von 1,8 g/cm³,
  • haben eine hydrophile Oberfläche mit terminalen Si-OH-Gruppen,
    werden durch Hydrolyse von ortho-Silikaten und entsprechenden Verbindungen hergestellt,
  • sind sehr stabil in organischen Medien und wässrigen Puffern.


Zeigt alle 83 Ergebnisse

Referenzen
  • Beitz, E., Güttler, C., Blum, J., Meisner, T., Teiser, J., and Wurm, G., Low-velocity collisions of centimeter-sized dust aggregates, The Astrophysical Journal, 2011, 736(1), 34;
  • Blum, J., and Schräpler, R., Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition, Physical review letters, 2004, 93(11), 115503;
  • Blum, J., Schräpler, R., Davidsson, B.J., and Trigo-Rodríguez, J.M., The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the solar system, The Astrophysical Journal, 2006, 652(2), 1768;
  • Boenigk, J., and Novarino, G., Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates, Aquatic microbial ecology, 2004, 34(2), 181-92;
  • Boenigk, J., Wiedlroither, A., and Pfandl, K., Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties, Aquat Toxicol, 2005, 71, 249-59;
  • Chen, X.-Z., Shamsudhin, N., Hoop, M., Pieters, R., Siringil, E., Sakar, M.S., Nelson, B.J., and Pane, S., Magnetoelectric micromachines with wirelessly controlled navigation and functionality, Materials Horizons, 2016, 3(2), 113-8, doi: 10.1039/C5MH00259A;
  • Denisov, D., Dang, M.T., Struth, B., Wegdam, G., and Schall, P., Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology, Scientific Reports, 2013, 3, 1631;
  • Faramarzi, V., Light-Triggered molecular electronics in the 100nm size range, PhD thesis, 2011;
  • Fujioka, K., Hanada, S., Inoue, Y., Sato, K., Hirakuri, K., Shiraishi, K., Kanaya, F., Ikeda, K., Usui, R., and Yamamoto, K., Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers, International journal of molecular sciences, 2014, 15(7), 11742-59;
  • Goldenberg, L.M., Wagner, J., Stumpe, J., Paulke, B.-R., and Görnitz, E., Simple method for the preparation of colloidal particle monolayers at the water/alkane interface, Langmuir, 2002, 18(14), 5627-9;
  • Hasezaki, T., Isoda, K., Kondoh, M., Tsutsumi, Y., and Yagi, K., Hepatotoxicity of silica nanoparticles with a diameter of 100 nm, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2011, 66(9), 698-703;
  • Hata, K., Higashisaka, K., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S.-i., Yoshioka, Y., and Tsutsumi, Y., Evaluation of silica nanoparticle binding to major human blood proteins, Nanoscale Research Letters, 2014, 9(1), 668;
  • Heim, L.-O., Butt, H.-J., Blum, J., and Schräpler, R., A new method for the analysis of compaction processes in high-porosity agglomerates, Granular Matter, 2008, 10(2), 89-91;
  • Heim, L.-O., Butt, H.-J., Schräpler, R., and Blum, J., Analyzing the Compaction of High-Porosity Microscopic Agglomerates, Aust J Chem, 2005, 58, 671-3;
  • Higashisaka, K., Kunieda, A., Iwahara, Y., Tanaka, K., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S.-i., Yoshioka, Y., and Tsutsumi, Y., Neutrophilia Due to Silica Nanoparticles Induces Release of Double-Stranded DNA, Journal of Nanomedicine & Nanotechnology, 2014, 5(5), 1;
  • Higashisaka, K., Yoshioka, Y., Yamashita, K., Morishita, Y., Fujimura, M., Nabeshi, H., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S.-i., Yoshikawa, T., Itoh, N., and Tsutsumi, Y., Acute phase proteins as biomarkers for predicting the exposure and toxicity of nanomaterials, Biomaterials, 2011, 32, 3-9;
  • Higashisaka, K., Yoshioka, Y., Yamashita, K., Morishita, Y., Pan, H., Ogura, T., Nagano, T., Kunieda, A., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S.-i., Nabeshi, H., Yoshikawa, T., and Tsutsumi, Y., Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles, Nanoscale Res Lett, 2012, 7, 555;
  • Hirai, T., Yoshikawa, T., Nabeshi, H., Yoshida, T., Tochigi, S., Ichihashi, K.-i., Uji, M., Akase, T., Nagano, K., and Abe, Y., Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection, Part Fibre Toxicol, 2012, 9(3);
  • Langkowski, D., Teiser, J., and Blum, J., The physics of protoplanetesimal dust agglomerates. II. Low-velocity collision properties, The Astrophysical Journal, 2008, 675(1), 764;
  • Li, X., Kondoh, M., Watari, A., Hasezaki, T., Isoda, K., Tsutsumi, Y., and Yagi, K., Effect of 70-nm silica particles on the toxicity of acetaminophen, tetracycline, trazodone, and 5-aminosalicylic acid in mice, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2011, 66(4), 282-6;
  • Lu, X., Tian, Y., Zhao, T., Xiao, S., and Fan, X., Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice, Nanotechnology, 2011, 22(5), 055101;
  • Morishige, T., Yoshioka, Y., Inakura, H., Tanabe, A., Yao, X., Narimatsu, S., Monobe, Y., Imazawa, T., Tsunoda, S.-i., Tsutsumi, Y., Mukai, Y., Okada, N., and Nakagawa, S., The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1ß production, ROS production and endosomal rupture, Biomaterials, 2010, 6833-42;
  • Nabeshi, H., Yoshikawa, T., Akase, T., Yoshida, T., Tochigi, S., Hirai, T., Uji, M., Ichihashi, K.-i., Yamashita, T., and Higashisaka, K., Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages, Nanoscale research letters, 2011, 6(1), 1-5;
  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y., and Yagi, K., Influence of 70 nm silica particles in mice with cisplatin or paraquat-induced toxicity, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2009, 64(6), 395-7;
  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S.-i., Tsutsumi, Y., and Yagi, K., Histological analysis of 70-nm silica particles-induced chronic toxicity in mice, European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72(3), 626-9;
  • Oh-e, M., Yokoyama, H., Koeberg, M., Hendry, E., and Bonn, M., High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids, Optics Express, 2006, 14(23), 11433-41;
  • Oh-e, M., Yokoyama, H., Koeberg, M., Hendry, E., and Bonn, M., Liquid Crystal Colloids Studied by THz Time-Domain Spectroscopy, Molecular Crystals and Liquid Crystals, 2008, 480(1), 21-8;
  • Paul, J., Romeis, S., Tomas, J., and Peukert, W., A review of models for single particle compression and their application to silica microspheres, Advanced Powder Technology, 2014, 25, 136-53, doi: http://dx.doi.org/10.1016/j.apt.2013.09.009;
  • Pfandl, K., and Boenigk, J., Stuck in the mud: suspended sediments as a key issue for survival of chrysomonad flagellates, Aquatic microbial ecology, 2006, 45(1), 89-99;
  • Poppe, T., Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates, Icarus, 2003, 164(1), 139-48;
  • Price, M.C., Kearsley, A.T., Burchell, M., Hörz, F., Borg, J., Bridges, J.C., Cole, M.J., Floss, C., Graham, G., and Green, S.F., Comet 81P/Wild 2: The size distribution of finer (sub‐10 μm) dust collected by the Stardust spacecraft, Meteoritics & Planetary Science, 2010, 45(9), 1409-28;
  • Rahmani, Y., Koopman, R., Denisov, D., and Schall, P., Probing incipient plasticity by indenting colloidal glasses, Scientific reports, 2013, 3;
  • Ramsteiner, I., Jensen, K.E., Weitz, D.A., and Spaepen, F., Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfaces, Physical Review E, 2009, 79(1), 011403;
  • Ramsteiner, I., Weitz, D., and Spaepen, F., Stiffness of the crystal-liquid interface in a hard-sphere colloidal system measured from capillary fluctuations, Physical Review E, 2010, 82(4), 041603;
  • Reicherter, M., Gorski, W., Haist, T., and Osten, W., Dynamic correction of aberrations in microscopic imaging systems using an artificial point source, SPIE USE, 2004, 3, 5462-11;
  • Romeis, S., Paul, J., and Peukert, W., A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM, Rev Sci Instrum, 2012, 83, 095105;
  • Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Visualization of Dislocation Dynamics in Colloidal Crystals, Science, 2004, 305, 1944-8;
  • Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Visualizing dislocation nucleation by indenting colloidal crystals, Nature, 2006, 440, 319-23;
  • Totoki, S., Yamamoto, G., Tsumoto, K., Uchiyama, S., and Fukui, K., Quantitative Laser Diffraction Method for the Assessment of Protein Subvisible Particles, Journal of Pharmaceutical Sciences, 2015, 104(2), 618-26, doi: 10.1002/jps.24288;
  • Hinojosa, B.R., Nanoparticles engineered to bind serum albumin: Microwave assisted synthesis , characterization, and functionalization of fuorescently-labeled, acrylate- based, polymer nanoparticles, PhD thesis, 2010;
  • Morishige, T., Yoshioka, Y., Inakura, H., Tanabe, A., Yao, X., Tsunoda, S., Tsutsumi, Y., Mukai, Y., Okada, N., and Nakagawa, S., Cytotoxicity of amorphous silica particles against macrophage-like THP-1 cells depends on particle-size and surface properties, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2010, 65(8), 596-9;
  • Oehrlein, S.M., Sanchez-Perez, J.R., Jacobson, R., Flack, F.S., Kershner, R.J., and Lagally, M.G., Translation and manipulation of silicon nanomembranes using holographic optical tweezers, Nanoscale research letters, 2011, 6(1), 1-7;
  • Willmott, G., Vogel, R., Yu, S., Groenewegen, L., Roberts, G., Kozak, D., Anderson, W., and Trau, M., Use of tunable nanopore blockade rates to investigate colloidal dispersions, Journal of Physics: Condensed Matter, 2010, 22(45), 454116;
  • Claudet, C., Angelov, D., Bouvet, P., Dimitrov, S., and Bednar, J., Histone octamer instability under single molecule experiment conditions, J Biol Chem, 2005, 280(20), 19958-65;
  • Delport, F., Deres, A., Hotta, J.-i., Pollet, J., and al., e., Improved methods for counting DNA molecules on biofunctionalized nanoparticles, Langmuir, 2010, 26(3), 1594-7;
  • Guthaus, E., Bürgle, M., Schmiedeberg, N., Hocke, S., Eickler, A., Kramer, M.D., Sweep, C.G.J.F., Magdolen, V., Kessler, H., and Schmitt, M., uPA-Silica-Particles (SP-uPA): A novel analytical system to investigate uPA-uPAR-interaction and to test synthetic uPAR-antagonists as potential cancer therapeutics, Biolog Chem, 2002, 383(1), 207-16;
  • Guthaus, E., Schmiedeberg, N., Bürgle, M., Magdolen, V., Kessler, H., and Schmitt, M., The urokinase receptor (uPAR, CD87) as a target for tumor therapy: uPA-Silica-Particles (SP-uPA) as a new tool to assess synthetic peptides to interfere with uPA/uPA-receptor interaction (Review), Recent Results Cancer Res, 2003, 162, 3-14;
  • Pang, L., Farkas, K., Bennett, G., Varsani, A., Easingwood, R., Tilley, R., Nowostawska, U., and Lin, S., Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles, Water research, 2014, 62, 167-79;
  • Isobe, K., Suda, A., Hashimoto, H., Kannari, F., and al., e., High-resolution fluorescence microscopy based on a cyclic sequential multiphoton process, Biomedical Optics Express, 2010, 1(3), 791-7;
  • Suter, D.M., Schaefer, A.W., and Forscher, P., Microtubule dynamics are necessary for src family kinase-dependent growth cone steering, Current Biology, 2004, 14, 1194-9;
Unterkategorien: