micromer®-M

Magnetische Polystyrolpartikel (micromer®-M)

  • sind monodisperse Partikel, die aus einer organischen Styrol-Maleinsäure-Copolymer-Matrix bestehen, die von nanoskaligem Eisenoxid umgeben ist,
  • werden abschließend mit einer Polymerschicht umhüllt, die das Magnetit einkapselt und gleichzeitig chemische Funktionalitäten einführt,
  • können einfach mit konventionellen Permanentmagneten separiert werden,
  • sind als Standardprodukte mit abgestuften Durchmessern im Bereich von 2 bis 10 µm erhältlich,
  • werden mit den Oberflächengruppen NH2, PEG-NH2, COOH und PEG-COOH für die kovalente Bindung von Proteinen, Antikörpern oder anderen Molekülen angeboten,
  • sind erhältlich mit kovalent gebundenen Proteinen (Avidin, Streptavidin, Protein A).

 

Zeigt alle 56 Ergebnisse

Referenzen
  • Hashiguchi, S., Methods for recovering microorganisms and nucleic acid using fine particle and kit to be used for the methods, EP 1882738A1, 2008;
  • Helou, M., Reisbeck, M., Tedde, S.F., Richter, L., Bär, L., Bosch, J.J., Stauber, R.H., Quandtd, E., and Hayden, O., Time-of-flight magnetic flow cytometry in whole blood with integrated sample preparation, Lab Chip, 2013, 13(6), 1035-8;
  • Kuramitz, H., Magnetic microbead-based electrochemical immunoassays, Anal Bioanal Chem, 2009, 394, 61-9;
  • Wirix-Speetjens, R., Fyen, W., De Boeck, J., and Borghs, G., Single magnetic particle detection: Experimental verification of simulated behavior, Journal of applied physics, 2006, 99(10), 103903;
  • Wirix-Speetjens, R., Fyen, W., De Boeck, J., and Borghs, G., Enhanced magnetic particle transport by integration of a magnetic flux guide: Experimental verification of simulated behavior, Journal of applied physics, 2006, 99(8), 08P101;
  • Wirix-Speetjens, R., Fyen, W., Xu, K., Boeck, J.D., and Borghs, G., A force study of on-chip magnetic particle transport based o tapered conductors, IEEE Transactions on Magnetics, 2005, 41(10), 4128-33;
  • Banerjee, S., Seul, M., and Li, A.X., Arrays of magnetic particles, US 0272049, 2005;
  • Chandramohanadas, R., Park, Y., Lui, L., Li, A., Quinn, D., Liew, K., Diez-Silva, M., Sung, Y., Dao, M., and Lim, C.T., Biophysics of malarial parasite exit from infected erythrocytes, PloS one, 2011, 6(6), e20869;
  • Ferreira, H., Graham, D., Freitas, P., and Cabral, J., Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors, Journal of Applied Physics, 2003, 93(10), 7281-6;
  • Graham, D., Ferreira, H., Bernardo, J., Freitas, P., and Cabral, J., Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications, Journal of Applied Physics, 2002, 91(10), 7786-8;
  • Graham, D.L., Ferreira, H.A., and Freitas, P.P., Magnetoresistive-based biosensors and biochips, Trends in Biotechnology, 2004, 22(9), 455-62;
  • Graham, D.L., Ferreira, H.A., Freitas, P.P., and Cabral, J.M.S., High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors, Biosensors and Bioelectronics, 2003, 18(4), 483-8;
  • Lagae, L., Wirix-Speetjens, R., Das, J., Graham, D., Ferreira, H., Freitas, P., Borghs, G., and De Boeck, J., On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors, Journal of Applied Physics, 2002, 91(10), 7445-7;
  • Lagae, L., Wirix-Speetjens, R., Liu, C.-X., Laureyn, W., Borghs, G., Harvey, S., Galvin, P., Ferreira, H., Graham, D., and Freitas, P., Magnetic biosensors for genetic screening of cystic fibrosis, IEE Proceedings-Circuits, Devices and Systems, 2005, 152(4), 393-400;
  • Liu, C., Lagae, L., Wirix-Speetjens, R., and Borghs, G., On-chip separation of magnetic particles with different magnetophoretic mobilities, Journal of applied physics, 2007, 101(2), 024913;
  • Liu, C., Stakenborg, T., Peeters, S., and Lagae, L., Cell manipulation with magnetic particles toward microfluidic cytometry, Journal of Applied Physics, 2009, 105(10), 102014;
  • Liu, Y., Jin, W., Yang, Y., and Wang, Z., Micromagnetic simulation for detection of a single magnetic microbead or nanobead by spin-valve sensors, Journal of applied physics, 2006, 99(8), 08G102;
  • Llandro, J., Palfreyman, J.J., Ionescu, A., and Barnes, C.H.W., Magnetic biosensor technologies for medical applications: a review, Med Biol Eng Comput, 2010, 48, 977-98 (81);
  • Murthy, S.S., Dulgartulloch, A.J., Bray, W.J., Chandrasekaran, S., and Tiwari, A.K., High throughput magnetic isolation technique and device for biological materials, US 0024331, 2011;
  • Skottrup, P.D., Fought Hansen, M., Moresco Lange, J., Deryabina, M., Svendsen, W.E., Havsteen Jakobsen, M., and Dufva, M., Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray, Acta Biomater, 2010, 6, 3936-46;
  • Svedlindh, P., Gunnarsson, K., Strömberg, M., and Oscarsson, S., Bionanomagnetism, Nanomagnetism And Spintronics: Fabrication, Materials, Characterization And Applications, 2010;
  • Wirix-Speetjens, R., Magnetoresistive biosensors based on manipulation and detection of magnetic particles, University Leuven, 2006;
  • Bejhed, R.S., Bo, T., Eriksson, K., Brucas, R., Oscarsson, S., Strömberg, M., Svedlindh, P., and Gunnarsson, K., Magnetophoretic Transport Line System for Rapid On-Chip Attomol Protein Detection, Langmuir, 2015, 31(37), 10296-302;
  • Tian, B., Bejhed, R.S., Svedlindh, P., and Strömberg, M., Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection, Biosensors and Bioelectronics, 2016, 77, 32-9;
  • Dutz, S., Hayden, M., Schaap, A., Stoeber, B., and Häfeli, U.O., A microfluidic spiral for size-dependent fractionation of magnetic microspheres, Journal of Magnetism and Magnetic Materials, 2012, 324(22), 3791-8;
  • Ehresmann, A., Method and Apparatus for transporting magnetic fluids and particles, 2011, WO 054391 A1;
  • Moser, C., Mayr, T., and Klimant, I., Filter cubes with built- in ultrabright light- emitting diodes as exchangeable excitation light sources in fluorescence microscopy, Journal of Microscopy, 2006, 222, 135- 40;
  • Penchovsky, R., and McCaskill, J.S., Cascadable hybridisation transfer of specific DNA between microreactor selection modules, DNA 7, LNCS 2340, 2002, N. Jonoska and N.C. Seeman (Eds.), 46-56;
  • Recker, T., Haamann, D., Schmitt, A., Küster, A., Klee, D., Barth, S., and Müller-Newen, G., Directed covalent immobilization of fluorescently labeled cytokines, Bioconjugate chemistry, 2011, 22(6), 1210-20;
  • Eriksson, K., Palmgren, P., Nyholm, L., and Oscarsson, S., Electrochemical synthesis of gold and protein gradients on particle surfaces, Langmuir, 2012, 28, 10318-23;
  • Johansson, L.E., Gunnarsson, K., Bijelovic, S., Eriksson, K., Surpi, A., Göthelid, E., Svedlindh, P., and Oscarsson, S., A magnetic microchip for controlled transport of attomole levels of proteins, Lab Chip, 2010, 10, 654-61;
  • Oscarsson, S., Nyholm, L., Svedlindh, P., and Gunnarsson, K., Partial derivatization of particles, US 0003401, 2011;
  • Penchovsky, R., Birch-Hirschfeld, E., and McCaskill, J.S., End-specific covalent photo-dependent immobilisation of synthetic DNA to paramagnetic beads, Nucleic acids research, 2000, 28(22), e98-e;
  • Chung, J., Kim, Y.-J., and Yoon, E., Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures, Appl Physics Lett, 2011, 98, 123701;
  • Hoyos, M., Moore, L., Williams, P.S., and Zborowski, M., The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species, Journal of magnetism and magnetic materials, 2011, 323(10), 1384-8, doi: 10.1016/j.jmmm.2010.11.051;
  • Loureiro, J., Fermon, C., Pannetier-Lecoeur, M., Arrias, G., Ferreira, R., Cardoso, S., and Freitas, P., Magnetoresistive detection of magnetic beads flowing at high speed in microfluidic channels, IEEE Transactions on Magnetics, 2009, 45(10), 4873-6;
Unterkategorien: