sicastar®-F

Fluoreszente Silikatpartikel (sicastar®-F)

  • werden durch Hydrolyse von ortho-Silikaten und entsprechenden Verbindungen hergestellt,
  • enthalten eine große Menge an kovalent gebundenem Fluoreszenzfarbstoff in der Silikatmatrix und sind sehr stabil in organischen Medien und wässrigen Puffern (Die kovalent gebundenen Fluoreszenzfarbstoffe zeigen keine toxischen Effekte.),
  • sind erhältlich mit roter Fluoreszenz (sicastar®-redF, Anregung: 569 nm, Emission: 585 nm), grüner Fluoreszenz (sicastar®-greenF, Anregung: 485 nm, Emission: 510 nm) und blauer Fluoreszenz (sicastar®-blueF, Anregung: 354 nm, Emission: 450 nm).


Zeigt alle 104 Ergebnisse

Referenzen
  • Pritz, C.O., Bitsche, M., Salvenmoser, W., Dudás, J., Schrott-Fischer, A., and Glueckert, R., Endocytic trafficking of silica nanoparticles in a cell line derived from the organ of Corti, Nanomedicine, 2013, 8(2), 239-52;
  • Vonnemann, J., Liese, S., Kuehne, C., Ludwig, K., Dernedde, J., Böttcher, C., Netz, R.R., and Haag, R., Size Dependence of Steric Shielding and Multivalency Effects for Globular Binding Inhibitors, Journal of the American Chemical Society, 2015, 137(7), 2572-9;
  • Battersby, B.J., Bryant, D., Meutermans, W., Matthews, D., Smythe, M.L., and Trau, M., Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry, Journal of the American Chemical Society, 2000, 122(9), 2138-9;
  • Boulogne, F., Giorgiutti-Dauphiné, F., and Pauchard, L., The buckling and invagination process during consolidation of colloidal droplets, Soft Matter, 2013, 9(3), 750-7;
  • Einert, T., Lipowsky, P., Schilling, J., Bowick, M.J., and Bausch, A.R., Grain Boundary Scars on Spherical Crystals, Langmuir, 2005, 21, 12076- 9;
  • Freese, C., Schreiner, D., Anspach, L., Bantz, C., Maskos, M., Unger, R.E., and Kirkpatrick, C.J., In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch, Particle and fibre toxicology, 2014, 11(1), 68;
  • Fujioka, K., Hanada, S., Inoue, Y., Sato, K., Hirakuri, K., Shiraishi, K., Kanaya, F., Ikeda, K., Usui, R., and Yamamoto, K., Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers, International journal of molecular sciences, 2014, 15(7), 11742-59;
  • Kasper, J., Hermanns, M.I., Bantz, C., Maskos, M., Stauber, R., Pohl, C., Unger, R.E., and Kirkpatrick, J.C., Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures, Part Fibre Toxicol, 2011, 8(1), 6;
  • Kasper, J., Hermanns, M.l., Bantz, C., Koshkina, O., Lang, T., Maskos, M., Pohl, C., Unger, R.E., and Kirkpatrick, J.C., Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins, Arch Toxicol, 2013, 87(6), 1053-65;
  • Kasper, J., Hermanns, M.l., Bantz, C., Utech, S., Koshkina, O., Maskos, M., Brochhausen, C., Pohl, C., Fuchs, S., Unger, R.E., and Kirkpatrick, J.C., Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro, Eur J Pharm Biopharm, 2013, 84, 275-87;
  • Kasper, J.Y., Feiden, L., Hermanns, M.I., Bantz, C., Maskos, M., Unger, R.E., and Kirkpatrick, C.J., Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model, Beilstein Journal of Nanotechnology, 2015, 6, 517-28, doi: 10.3762/bjnano.6.54;
  • Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., and Akase, T., Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2010, 65(3), 199-201;
  • Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., and Akase, T., Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure, Nanotechnology, 2012, 23(4), 045101;
  • Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Nagano, K., and Abe, Y., Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes, Particle and fibre toxicology, 2011, 8(1), 1;
  • Schiperski, F., Zirlewagen, J., and Scheytt, T., Transport and attenuation of particles of different density and surface charge: A karst aquifer field study, Environmental science & technology, 2016, 50(15), 8028-35;
  • Hiemer, B., Krogull, M., Zander, K., Grüttner, C., Bergschmidt, P., Tischer, T., Wree, A., Bader, R., and Pasold, J., Chondrogenic Differentiation of Human Chondrocytes and Stem Cells in Different Cell Culture Systems Using IGF-1-Coupled Particles, Journal of Tissue Science & Engineering, 2017, 8(2);
  • Kortmann, M., Analyse der Rolle der C- terminalen Domänen des großen Adhäsins SiiE für die Bindung an polarisierte Epithelzellen, Universität Osnabrück, 2011;
  • Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S.O., Donnert, G., and Hell, S.W., Dual-color STED microscopy at 30-nm focal-plane resolution, Small, 2008, 4(8), 1095-100;
  • Nabeshi, H., Yoshikawa, T., Arimori, A., Yoshida, T., Tochigi, S., Hirai, T., Akase, T., Nagano, K., Abe, Y., and Kamada, H., Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages, Nanoscale Res Lett, 2011, 6(1), 93;
  • Pasold, J., Bader, R., Zander, K., Heskamp, B., Grüttner, C., Lüthen, F., Tischer, T., and Jonitz-Heincke, A., Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds, Int J of Nanomedicine, 2015, 10, 1131-43, doi: 10.2147/ijn.s72872;
  • Punge, A., Rizzoli, S.O., Jahn, R., Wildanger, J.D., Meyer, L., Schönle, A., Kastrup, L., and Hell, S.W., 3D reconstruction of high‐resolution STED microscope images, Microscopy research and technique, 2008, 71(9), 644-50;
  • Watanabe, S., Punge, A., Hollopeter, G., Willig, K.I., Hobson, R.J., Davis, M.W., Hell, S.W., and Jorgensen, E.M., Protein localization in electron micrographs using fluorescence nanoscopy, Nature methods, 2011, 8(1), 80-4;
  • Howorka, S., and Pammer, P., Molecule arrays and method for producing the same, WO/2005/025737, 2005;
Unterkategorien: